Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42048
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李鴻源(Hong-Yuan Lee)
dc.contributor.authorPin-Han Kuoen
dc.contributor.author郭品含zh_TW
dc.date.accessioned2021-06-15T00:43:51Z-
dc.date.available2009-09-02
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-28
dc.identifier.citationBaritlett, R. E.(1981)Surface Water Sewerage, 2nd Edition. Applied Science Publishers Ltd, London.
Chow, V. T. et al.(1988)Applied Hydrology. McGraw-Hill, Singapore.
Dal Cin, L. & Persson, R.J.(2000)The Influence of Vegetation on Hydraulic Performance in a Surface Flow Wetland. In: Reddy, K.R., Kadlec, R.H.(Eds.), Proceedings of Seventh International Conference on Wetland Systems for Water Pollution Control, vol.2. Lake Buena Vista, FL, 11-16 November, pp. 539-546.
Dierberg, F.E. et al.(2005) Relationship between Hydraulic Efficiency and Phosphorus Removal in a Submerged Aquatic Vegetation-Dominated Treatment Wetland. Ecological Engineering,Vol.25,pp. 9-23.
Fogler, H. S.(2006)Elements of Chemical Reaction Engineering, 4th edition. Upper Saddle River, NJ.
German J., K. Jansons, G. Svensson, D. Karlsson and L. G. Gustafsson(2005)Modelling of different measures for improving removal in a stormwater pond. Water Science & Technology, Vol. 52, No. 5, pp. 105-112.
Holland, J.F. et al.(2004) Effects of Wetland Depth and Flow Rate on Residence time distribution Characteristics. Ecological Engineering,Vol.23,pp.189-203.
Jedhav, R.S. and Buchberger, S.G.(1995)Effects of vegetation on flow through free water surface wetlands. Ecological Engineering,Vol.5,pp.481-496.
Kadlec, R. H.(2005)Wetlands to Pond treatment gradients. Water Science & Technology, Vol.51, No.9, pp.291-298.
Kadlec, R. H.(1990)Overland Flow in Wetlands:Vegetation Resistance. Journal of Hydraulic Engineering, Vol. 116, No. 5, pp. 691-706.
Kadlec, R. H.(1994)Detention and Mixing in Free Water Wetlands. Ecological Engineering, No.3, pp.345-380.
Kadlec, R. H. and Knight, R. L.(1996)Treatment Wetlands, CRC press, Lewis Publishers.
Kadlec, R. H.(2000)The Inadequacy of First-Order Treatment Wetland Models. Ecological Engineering, No.15, pp.105-119.
Kadlec, R. H.(2003)Effects of pollutant speciation in treatment wetland design. Ecological Engineering, No.20, pp.1-16.
Kadlec, R. H.(2005)Wetland to Pond Treatment Gradients. Water Science & Technology, Vol. 51, No.9, pp.291.
Koskiaho, J.(2003)Flow velocity retardation and sediment retention in two constructed wetland-ponds. Ecological Engineering, Vol. 19, pp. 325-337.
Levenspiel, O.(1999)Chemical Reaction Engineering, 3rd edition. John Wiley & Sons, USA.
Mangelson, K. A.(1972)Hydraulics of Water Stabilization Ponds and Its Influence on Treatment Efficiency. PhD dissertation, Utah State University, Logan, Utah.
Petryk,S. and Bosmajian(1975)Analysis of Flow Through Vegetation. Journal of Hydraulics Division,Vol101,Issue 7,pp.871-884
Persson, J.et al.(1999)Hydraulics Efficiency of Constructed Wetlands and Ponds. Water Science and Technology, Vol. 40, No. 3, pp. 291-300.
Reed, S. C. et al.(1995)Nature Systems for Waste Management and Treatment, 2nd edition, McGraw-Hill, New York.
Shih, S.F. and Rahi,G.D.,(1982) Seasonal Variations of Manning’s RoughnessCoefficient in a Subtropical Marsh. American Society of Agricultural Engineers, Vol.25, Issue1, p.p.116-120.
Thackston, E. L., F. Douglas Shields and Paul R. Schroeder(1987)Residence Time Distributions of Shallow Basins. Journal of Environmental Engineering, Vol. 113, No. 6, pp. 1319-1332.
US Army Corps of Engineer - Waterways Experiment Station Hydraulics Laboratory(1997)Users Guide to RMA2 WES, Version 4.3.
US Army, Engineer Research and Development Center Waterways Experiment Station Coastal and Hydraulics Laboratory(2003)Users Guide to RMA4 WES, Version 4.5.
USEPA(2000)Constructed Wetlands Treatment of Municipal Wastewaters, Manual.
Werner, T. M. and Kadlec, R. H.(1996)Application of residence time distribution to stoemwater treatment systems. Ecological Engineering, Vol.7, pp.213-234
Wong, T.H.F., et al.(1999)Managing Urban Stormwater Using Constructed Wetlands. Cooperative Research Center, Industry Report.
Woody L. Cowan(1956)Estimating Hydraulic Roughness Coefficients. Agricultural Engineering, Vol. 37, No. 7, pp. 473-475.
台灣大學生態工程研究中心,2007,二重疏洪道溼地水質淨化園區規劃及基本設計委託技術服務,期中報告書。。
朱佳仁,2003,環境流體力學,科技圖書
行政院經濟建設委員會,2006,國土復育策略方案暨行動計畫。
行政院環境保護署,2005,河川水質淨化工法設計研究計畫。
財團法人台灣水利環境科技研究發展教育基金會,2005,滯洪設施模式分析評估與規劃設計標準作業程序之研究(1/2),成果報告書。
財團法人台灣水利環境科技研究發展教育基金會,2007,嘉義地區國土復育及永續發展規劃,期末報告書。
張文亮,2007,溼地生態與工程課程講義 - 環保署教材文案。
蘇宗敏,2007,表面流人工溼地水力效率之研究,台灣大學土木所碩士論文。
The Ramsar Convention,http://www.ramsar.org/。
Google 地圖,http://maps.google.com.tw/。
中央氣象局全球資訊網,http://www.cwb.gov.tw/。
行政院環保署,http://www.epa.gov.tw/
全國法規資料庫,http://law.moj.gov.tw/。
環保署全國環境水質監測資訊網,http://wqshow.epa.gov.tw。
環保署環境資訊庫,http://edb.epa.gov.tw/index.htm。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42048-
dc.description.abstract水質處理型滯洪溼地(Treatment Detention Wetland)為於滯洪池內加入表面流人工溼地配置,而成為複合式設施;其目的為於汛期具有滯洪功能,而於非汛期保有水質處理功能。而根據國內滯洪案例可以發現,台灣的滯洪池中水深幾乎都大於1.5m;然而,表面流人工溼地設計的水深範圍通常介於0.15-0.6m間,由此可知,當一個人工溼地擁有了滯洪池所設計之較高水深後,其水質處理功能必定存在著矛盾及妥協之處,因此水深將會是尋求同時滿足滯洪與水質處理兩種不同功能需求的最重要參數。
  本研究利用TABS-2數值模式中之水理(RMA2)及水質(RMA4)模組進行模擬示蹤劑實驗,用以推估水力效率λ與汙染物移除效率,且於本研究中定義一個汙染物移除的量化指標–汙染物移除有效時間比et,使得水力效率對於汙染物移除的影響能夠加以量化。由模擬結果發現:水深由0.1增加至2.5m時,隨著水深的增加,水力效率從0.86下降至0.15;而BOD、ammonia、nitrate之移除有效時間比et也隨著水力效率下降而下降,亦即當水力效率減低時,汙染物之移除與理論移除效率差異也越多,故溼地中若有較高之水力效率,則對於汙染物移除而言,將會更符合預期之移除率。此外,本研究也利用迴歸分析,提出水力效率λ與汙染物移除有效時間比et關係式,其可作為實際設計參考。
  最後,本研究綜合模擬結果,提出一個水質處理型滯洪溼地最佳化設計評估流程,以供後續設計者,能夠利用此設計流程,在滯洪池與表面流人工溼地兩者的衝突點上,找到一個平衡,進而設計一個最佳化之水質處理型人工溼地;同時本研究也以「嘉義沿海地區國土復育及永續發展規劃」所擬定的東石示範區,作為案例分析,以示範如何將這套最佳化設計流程實際運用於現地規劃中。
zh_TW
dc.description.abstractTreatment Detention Wetland means adding the FWS (free water surface) wetland into the detention pond. The function of Treatment Detention Wetland is to provide detention volume in the flood period and waste water treatment in ordinary days. Nevertheless, the designs of the detention pond and the FWS wetland are different. Take Taiwan for an example, the design of water depth is always over 1.5 - meters in Taiwan. According to EPA manual (2000), however, the range of water depth in the FWS wetland is 0.15-0.6 meters. As a result, the water depth lays a crucial role in Treatment Detention Wetland for seeking of satisfying both detention function and waste water treatment function.
When the depth of the FWS wetland is as higher as the designing of the detention pond, there must exist some contradictions in Hydraulic efficiency, λ , and the pollution removal rates. A horizontal two dimensional model, TABS-2, was employed in this study to simulate the tracer tests for evaluating hydraulic efficiency, λ and the pollution–BOD, ammonia, and nitrate–removal rates based on Reed et al. (1995) with the simulated RTD (residence time distribution). Besides, this study defines a index, Effective Treatment Time Ratio–et ,to quantify the effective treatment time for pollution removing. The results demonstrate that when the water depth rises from 0.1 to 2.5 meters, the RTD are divergent, the effective volume rate, ev, is only half remain in 2.5-meter-depth and the hydraulic efficiency, λ, decrease from 0.86 to 0.15. Beside, the Effective Treatment Time Ratio–et decreases as the water depth elevated. Therefore, the difference of the pollution removal rates between the actual-situations and the theory-situations is higher due to the declined hydraulic efficiency, λ.
This study integrates the result of modeling to bring up an optimal designing procedure for Treatment – Detention – Wetland – designing. Therefore, the follow-up designers could refer to this procedure to strike the optimal designing. By the way, this study also analyzes a case drew up by the project, Master Planning for Environmental Restoration and Sustainable Revitalization in Chiayi Coast Region, to demonstrate how to apply the procedure.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:43:51Z (GMT). No. of bitstreams: 1
ntu-97-R95521301-1.pdf: 2437736 bytes, checksum: 3dda1d6c1248e550275912c2ea55874a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
第壹章 緒論 1
1-1 研究緣起 1
1-2 研究動機與目的 2
1-3 研究架構 4
第貳章 文獻回顧 6
2-1 滯洪池 6
2-1-1 滯洪設施定義與型式 6
2-1-2 設計準則 7
2-1-3 台灣的相關規範 8
2-2 表面流人工溼地 10
2-2-1 溼地定義與類型 10
2-2-3 水力效率與汙染物移除效率 12
2-2-4 台灣的相關規範 14
2-3 水深差異的影響 15
第参章 研究方法 17
3-1 二維深度平均水理、水質模式(TABS-2) 17
3-1-1 水理模組(RMA2) 17
3-1-2 水質模組(RMA4) 19
3-2 滯留時間分佈(RTD) 19
3-2-1 栓塞流反應器與連續攪拌槽反應器 20
3-2-2 滯留時間分佈(RTD)與脈衝實驗 20
3-2-3 滯留時間分佈(RTD)函數 21
3-3 水力效率(Hydraulic Efficiency) 22
3-3-1 有效體積比 22
3-3-2 分散指標 23
3-3-3 水力效率 26
3-4 汙染物移除 27
3-4-1 生化耗氧量移除 28
3-4-2 氮移除 28
第肆章 數值模擬試驗 29
4-1 模式操作步驟 29
4-1-1 水理模組建立 29
4-1-2 水質模組建立 30
4-1-3 模擬結果資料分析 31
4-2 模式參數設定 32
4-2-1 粗糙係數n 32
4-2-2 渦流黏滯係數E與擴散係數D 34
4-2-3 溫度 36
4-3假想案例水力效率推估 38
4-3-1 假想案例設計 38
4-3-2 水深對水力效率的影響 39
4-3-3 面積尺度對水力效率的影響 41
4-3-4 流量對水力效率的影響 42
4-4 假想案例汙染物移除率推估 44
4-4-1 水深變化與汙染物移除的關係 45
4-4-2 流量變化與汙染物移除的關係 47
4-5 水力效率與汙染物移除的關係 49
第伍章 最佳化設計評估流程模擬 52
5-1 最佳化設計流程 52
5-2 案例介紹與基本設計 54
5-2-1 區域簡介 54
5-2-2 區域內滯洪需求與滯洪系統設計 56
5-2-3 區域內汙染源與溼地系統設計 57
5-3 水質處理型滯洪溼地最佳化設計 60
第陸章 結論與建議 62
6-1 結論 62
6-2 建議 63
參考文獻 66
符號表 70
簡歷 73
dc.language.isozh-TW
dc.subject最佳化設計評估流程zh_TW
dc.subject滯洪溼地zh_TW
dc.subject水深zh_TW
dc.subject水力效率zh_TW
dc.subject污染物移除有效時間比zh_TW
dc.subjectHydraulic Efficiencyen
dc.subjectOptimal Designing Procedureen
dc.subjectEffective Treatment Time Ratioen
dc.subjectDetention Wetlanden
dc.subjectWater Depthen
dc.title水質處理型滯洪溼地之最佳化設計研究zh_TW
dc.titleOn Optimal Design of Treatment Detention Wetlanden
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張文亮(Wen-Lian Chang),楊錦釧(Jin-Chuan Yang),游進裕(Jin-Yu You)
dc.subject.keyword滯洪溼地,水深,水力效率,污染物移除有效時間比,最佳化設計評估流程,zh_TW
dc.subject.keywordDetention Wetland,Water Depth,Hydraulic Efficiency,Effective Treatment Time Ratio,Optimal Designing Procedure,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2008-08-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
2.38 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved