請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭倫 | |
| dc.contributor.author | Jia-Ho Shiu | en |
| dc.contributor.author | 許嘉合 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:43:38Z | - |
| dc.date.available | 2009-09-02 | |
| dc.date.copyright | 2008-09-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-28 | |
| dc.identifier.citation | 吳岱穎 (2004) 溫度與光度對萼柱珊瑚(Stylophora pistillata)光合作用的影響. 國立台灣大學海洋研究所 碩士論文
Baker AC (2002) Ecology - Is coral bleaching really adaptive? Reply. Nature 415:602-602 Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals' adaptive response to climate change. Nature 430:741-741 Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proceedings of the Royal Society B-Biological Sciences 273:2305-2312 Bradford MM, Williams WL (1976) New, Rapid, Sensitive Method for Protein Determination. Federation Proceedings 35:274-274 Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129-S138 Brown BE, Downs CA, Dunne RP, Gibb SW (2002a) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Marine Ecology-Progress Series 242:119-129 Brown BE, Dunne RP, Goodson MS, Douglas AE (2002b) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119-126 Buddemeier RW, Fautin DG (1993) Coral Bleaching as an Adaptive Mechanism - a Testable Hypothesis. Bioscience 43:320-326 Coles SL, Brown BE (2003) Coral bleaching - Capacity for acclimatization and adaptation. Advances in Marine Biology, Vol 46 46:183-223 Douglas AE (2003) Coral bleaching - how and why? Marine Pollution Bulletin 46:385-392 Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197-204 Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radical Biology and Medicine 33:533-543 Downs CA, Fauth JE, Robinson CE, Curry R, Lanzendorf B, Halas JC, Halas J, Woodley CM (2005) Cellular diagnostics and coral health: Declining coral health in the Florida Keys. Marine Pollution Bulletin 51:558-569 Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Marine Biotechnology 2:533-544 Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. American Zoologist 39:30-43 Glynn PW (2001) A collection of studies on the effects of the 1997-98 El Nino-Southern Oscillation events on corals and coral reefs in the eastern tropical Pacific - Preface. Bulletin of Marine Science 69:1-4 Goulet TL (2006) Most corals may not change their symbionts. Marine Ecology-Progress Series 321:1-7 Griffin SP, Bhagooli R, Weil E (2006) Evaluation of thermal acclimation capacity in corals with different thermal histories based on catalase concentrations and antioxidant potentials. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 144:155-162 Hashimoto K, Shibuno T, Murayama-Kayano E, Tanaka H, Kayano T (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23:485-491 Jeffrey SW, Haxo FT (1968) Photosynthetic Pigments of Symbiotic Dinoflagellates (Zooxanthellae) from Corals and Clams. Biological Bulletin 135:149-& Jeffrey SW, Humphrey GF (1975) New Spectrophotometric Equations for Determining Chlorophylls a, B, C1 and C2 in Higher-Plants, Algae and Natural Phytoplankton. Biochemie Und Physiologie Der Pflanzen 167:191-194 Jones RJ (1997) Changes in zooxanthellar densities and chlorophyll concentrations in corals during and after a bleaching event. Marine Ecology-Progress Series 158:51-59 LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Marine Ecology-Progress Series 284:147-161 LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnology and Oceanography 48:2046-2054 Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187-192 Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367-377 Lesser MP, Lewis S (1996) Action spectrum for the effects of UV radiation on photosynthesis in the hermatypic coral Pocillopora damicornis. Marine Ecology-Progress Series 134:171-177 Lewis AR (1997) Recruitment and post-recruit immigration affect the local population size of coral reef fishes. Coral Reefs 16:139-149 Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Marine Ecology-Progress Series 222:97-107 Marsh JA (1970) Primary Productivity of Reef-Building Calcareous Red Algae. Ecology 51:254-& Meehan WJ, Ostrander GK (1997) Coral bleaching: A potential biomarker of environmental stress. Journal of Toxicology and Environmental Health 50:529-552 Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology 211:1050-1056 MullerParker G, Lee KW, Cook CB (1996) Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium sp, Dinophyceae) in fed and starved sea anemones maintained under high and low light. Journal of Phycology 32:987-994 Rowan R, Powers DA (1991) Molecular Genetic Identification of Symbiotic Dinoflagellates (Zooxanthellae). Marine Ecology-Progress Series 71:65-73 Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850-853 Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Marine Ecology-Progress Series 244:17-26 Sharp VA, Brown BE, Miller D (1997) Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis. Journal of Thermal Biology 22:11-19 Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biology 2:527-545 Stone L, Huppert A, Rajagopalan B, Bhasin H, Loya Y (1999) Mass coral reef bleaching: A recent outcome of increased El Nino activity? Ecology Letters 2:325-330 Trautman DA, Hinde R, Cole L, Grant A, Quinnell R (2002) Visualisation of the symbiosome membrane surrounding Cnidarian algal cells. Symbiosis 32:133-145 Tytler EM, Davies PS (1983) A Method of Isolating Clean and Viable Zooxanthellae by Density Gradient Centrifugation. Limnology and Oceanography 28:1266-1268 Visram S, Douglas AE (2007) Resilience and acclimation to bleaching stressors in the scleractinian coral Porites cylindrica. Journal of Experimental Marine Biology and Ecology 349:35-44 Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proceedings of the National Academy of Sciences of the United States of America 96:8007-8012 West JM, Salm RV (2003) Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conservation Biology 17:956-967 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42044 | - |
| dc.description.abstract | 近幾十年來由於全球暖化與聖嬰現象發生頻率增加導致海水水溫上升,造成珊瑚大量白化。珊瑚白化與溫度、光照變化的關係在過去十幾年來已成為珊瑚礁研究中重要的研究主題。研究發現,珊瑚可能可以適應溫度上升的現象。這種耐熱的能力可能不只是因為珊瑚體內具有耐熱的共生藻,也是珊瑚共生體長期適應環境後,細胞對熱產生較好的分子防禦機制(例如:抗逆境或抗氧化蛋白)。本論文採集副熱帶的野柳、熱帶的墾丁核三廠出熱水出水口及台灣西邊的澎湖代表生長不同緯度、不同海水水溫環境的萼柱珊瑚,進行加熱實驗。觀察三地珊瑚的耐熱程度差異及共生藻和宿主珊瑚細胞內分子防禦機制產生的程度與快慢,發現在熱帶核三廠出水口的萼柱珊瑚具有較高的耐熱能力。其細胞內的抗逆境蛋白(Hsp70)表現雖較野柳及澎湖地區的緩慢,但具有最高的表現量。因此,生長在海水溫度平均較高的萼柱珊瑚的較適應高海水溫度而具有較好的耐熱能力。而且,此種耐熱的分子防禦機制在抗逆境蛋白(Hsp70)的表現量上,大部份是由共生藻細胞所提供。 | zh_TW |
| dc.description.abstract | Coral reefs have been extensive and accelerating degradation worldwide probably due to a continuous global warming since industrial revolution. One of the causes for global coral degradation is “coral bleaching”, a syndrome known as loss of symbiotic algae (dinoflagellate genus Symbiodinium), the algae pigment, or both. In the last decades, much attention has been focused on diversity of Symbiodinium phylotypes identified by ribosomal RNA gene, and their potential functions on resistance and resilience of coral reefs to heat stress. Previous results indicated that the cellular defense mechanisms may be attributed to the physiological response to the stress in coral hosts or in conjunction with symbiotic algae. In this study, Stylophora pistillata collected from Penghu, Yeliu, and the elevated temperature water outlet of the third nuclear plant in Kenting (NUKE) was used as the model coral to examine the thermal resistance and acclimatisation. Our result reveals that thermal acclimatisation resulted thermal resistance in S. pistillata collected from NUKE are higher than that from Yeliu and Penghu Island and corals expressed more Hsp70 in the samples from NUKE than that from Yeliu and Penghu. Symbiodinium cells showed more contribution on thermal resistance than host cells in this study. The role of sub-clade typing of the Symbiodinium in these corals required further examination. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:43:38Z (GMT). No. of bitstreams: 1 ntu-97-R95241212-1.pdf: 434426 bytes, checksum: 2e542279aca288a630f374626d43ff0d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Introduction
1.1 The importance of coral reef ecosystems……………….……………………1 1.2 Coral bleaching…………………….…………………………………..…….1 1.3 The internal mechanisms (cellular level) make bleaching……..………….…3 1.4 Corals resist to bleaching stress………...……………………………………3 1.5 Coral and Zooxanthellae thermal acclimatization……...…………………….5 Materials and Methods 2.1 Study sites……………………………………………………………..……...8 2.2 Coral collection, maintenance, and experimental design…………………….8 2.3 Coral sample preparation……………………………………………….…….9 2.4 Reagents and Instruments…………………………………………………...10 2.5 Cellular parameters……………………………………………………...…..11 2.6 Gel electrophoresis, western blotting, and densitometric analysis………….11 2.7 DNA extraction, PCR amplification, and RFLP……………………………12 2.8 Determination of protein and photosynthetic pigments…………………….13 2.8 Algal densities…………………………………………………………...….14 2.9 Field temperature measurements…………………...……………………….14 2.10 Statistical analysis…………………………...…………………………….14 Results 3.1 Algal densities…………………...…..…………………………...……….16 3.2 Chlorophyll content………………..………………….…………………….18 3.3 Symbiodinium phylotype……………………………………………………18 3.4 Hsp70 expression………………...…………………………………………19 3.5 Ubiquitin expression………………………………………………………..21 Discussion 4.1 Our hypothesis……………………...……………………………………….23 4.2 Acclimatisaion……………….…..…………………………………….……24 4.3 Thermal resistance and cellular defense mechanisms………………………24 4.4 The contribution of thermal resistance from algae and host……..…………25 4.5 Limitation……………………………………………………………..…….26 4.6 Future work………………..……..…………………………………………26 References……………………………….……………….…………………………..28 Figures………………………………….………………………………….…………33 | |
| dc.language.iso | en | |
| dc.subject | 抗逆境蛋白(Hsp70) | zh_TW |
| dc.subject | 珊瑚白化 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 分子防禦機制 | zh_TW |
| dc.subject | 耐熱能力 | zh_TW |
| dc.subject | 不同緯度 | zh_TW |
| dc.subject | 不同海水水溫環境 | zh_TW |
| dc.subject | stress protein | en |
| dc.subject | acclimatisation | en |
| dc.subject | Stylophora pistillata | en |
| dc.subject | coral bleaching | en |
| dc.subject | thermal resistance | en |
| dc.title | 台灣熱帶與副熱帶地區的萼柱珊瑚熱抗性與逆境蛋白表現的空間差異 | zh_TW |
| dc.title | Spatial variation of thermal resistance and stress protein expression in Stylophora pistillata from tropical and subtropical Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王志騰 | |
| dc.contributor.oralexamcommittee | 湯森林,陳文明,宋克義 | |
| dc.subject.keyword | 珊瑚白化,溫度,分子防禦機制,耐熱能力,不同緯度,不同海水水溫環境,抗逆境蛋白(Hsp70), | zh_TW |
| dc.subject.keyword | thermal resistance,stress protein,coral bleaching,Stylophora pistillata,acclimatisation, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 424.24 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
