請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42041完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅雯(Ya-Wen Chang) | |
| dc.contributor.author | Cheng-Kuang Lee | en |
| dc.contributor.author | 李承光 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:43:28Z | - |
| dc.date.available | 2008-09-25 | |
| dc.date.copyright | 2008-09-25 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-28 | |
| dc.identifier.citation | Aucott, J. N., J. Fayen, et al. (1990). 'Invasive infection with Saccharomyces cerevisiae: report of three cases and review.' Rev Infect Dis 12(3): 406-11.
Borkovich, K. A., F. W. Farrelly, et al. (1989). 'hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures.' Mol Cell Biol 9(9): 3919-30. Burnie, J. P., T. L. Carter, et al. (2006). 'Fungal heat-shock proteins in human disease.' FEMS Microbiol Rev 30(1): 53-88. Chance, B., H. Sies, et al. (1979). 'Hydroperoxide metabolism in mammalian organs.' Physiol Rev 59(3): 527-605. Clemons, K. V., J. H. McCusker, et al. (1994). 'Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae.' J Infect Dis 169(4): 859-67. Davidson, J. F., B. Whyte, et al. (1996). 'Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.' Proc Natl Acad Sci U S A 93(10): 5116-21. Estruch, F. (2000). 'Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast.' FEMS Microbiol Rev 24(4): 469-86. Fahrenkrog, B., U. Sauder, et al. (2004). 'The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis.' J Cell Sci 117(Pt 1): 115-26. Frohlich, K. U., H. Fussi, et al. (2007). 'Yeast apoptosis--from genes to pathways.' Semin Cancer Biol 17(2): 112-21. Glover, J. R. and S. Lindquist (1998). 'Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins.' Cell 94(1): 73-82. Gourlay, C. W. and K. R. Ayscough (2006). 'Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae.' Mol Cell Biol 26(17): 6487-501. Hall, B. G. (1983). 'Yeast thermotolerance does not require protein synthesis.' J Bacteriol 156(3): 1363-5. Halliwell, B. and J. M. Gutteridge (1984). 'Oxygen toxicity, oxygen radicals, transition metals and disease.' Biochem J 219(1): 1-14. Halliwell, B. and M. Whiteman 'Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?' Br J Pharmacol 142(2): 231-255. Hodgetts, S., R. Matthews, et al. (1996). 'Over-expression of Saccharomyces cerevisiae hsp90 enhances the virulence of this yeast in mice.' FEMS Immunol Med Microbiol 16(3-4): 229-34. Kamiyama, A., M. Niimi, et al. (1989). 'Adansonian study of Candida albicans: intraspecific homogeneity excepting C. stellatoidea strains.' Medical Mycology 27(4): 229 - 241. King, C. L., J. I. Gallin, et al. (1989). 'Regulation of immunoglobulin production in hyperimmunoglobulin E recurrent-infection syndrome by interferon gamma.' Proc Natl Acad Sci U S A 86(24): 10085-9. Kwon-Chung, K. J., I. Polacheck, et al. (1982). 'Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice.' J Bacteriol 150(3): 1414-21. Lindquist, S. and G. Kim (1996). 'Heat-shock protein 104 expression is sufficient for thermotolerance in yeast.' Proc Natl Acad Sci U S A 93(11): 5301-6. Ludovico, P., M. J. Sousa, et al. (2001). 'Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid.' Microbiology 147(Pt 9): 2409-15. Madeo, F., E. Frohlich, et al. (1999). 'Oxygen stress: a regulator of apoptosis in yeast.' J Cell Biol 145(4): 757-67. Madeo, F., E. Herker, et al. (2004). 'Apoptosis in yeast.' Curr Opin Microbiol 7(6): 655-60. McCusker, J. H., K. V. Clemons, et al. (1994). 'Genetic characterization of pathogenic Saccharomyces cerevisiae isolates.' Genetics 136(4): 1261-9. McCusker, J. H., K. V. Clemons, et al. (1994). 'Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae.' Infect Immun 62(12): 5447-55. Medoff, G., B. Maresca, et al. (1986). 'Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum.' J Clin Invest 78(6): 1638-47. Moraitis, C. and B. P. Curran (2004). 'Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.' Yeast 21(4): 313-23. Murphy, A. and K. Kavanagh (1999). 'Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology.' Enzyme and Microbial Technology 25(7): 551-557. Picard, D. (2002). 'Heat-shock protein 90, a chaperone for folding and regulation.' Cellular and Molecular Life Sciences (CMLS) 59(10): 1640-1648. Sanchez, Y. and S. L. Lindquist (1990). 'HSP104 required for induced thermotolerance.' Science 248(4959): 1112-5. Sanchez, Y., J. Taulien, et al. (1992). 'Hsp104 is required for tolerance to many forms of stress.' EMBO J 11(6): 2357-64. Shouval, D., Y. Ilan, et al. (1994). 'Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeast-derived vaccines.' Vaccine 12(15): 1453-9. Silva, R. D., R. Sotoca, et al. (2005). 'Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae.' Mol Microbiol 58(3): 824-34. Singh, A. (1982). 'Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen.' Can J Physiol Pharmacol 60(11): 1330-45. Sinha, H., B. P. Nicholson, et al. (2006). 'Complex genetic interactions in a quantitative trait locus.' PLoS Genet 2(2): e13. Smith, B. J. and M. P. Yaffe (1991). 'Uncoupling thermotolerance from the induction of heat shock proteins.' Proc Natl Acad Sci U S A 88(24): 11091-4. Steinmetz, L. M., H. Sinha, et al. (2002). 'Dissecting the architecture of a quantitative trait locus in yeast.' Nature 416(6878): 326-30. Storz, G., M. F. Christman, et al. (1987). 'Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium.' Proc Natl Acad Sci U S A 84(24): 8917-21. Sugiyama, K., A. Kawamura, et al. (2000). 'Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.' Biochem J 352 Pt 1: 71-8. Wheeler, R. T., M. Kupiec, et al. (2003). 'A Saccharomyces cerevisiae mutant with increased virulence.' Proc Natl Acad Sci U S A 100(5): 2766-70. Yamamoto, N., Y. Maeda, et al. (2008). 'Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.' Eukaryot Cell 7(5): 783-90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42041 | - |
| dc.description.abstract | Saccharomyces cerevisiae一般來說不具有致病性,但近年來陸續感染病例的報告,所以被認為也是一種伺機性感染的病原體。先前的研究指出釀酒酵母菌的臨床菌株多出了能在高溫(42°C)下生長以及假菌絲產生的能力,推測這兩者為可能的致病因子。在台大醫院分離之三個臨床菌株,我們發現當中有兩個具有高溫生長能力以及假菌絲生成能力。本研究目標主要為探討S. cerevisiae的高溫生長能力這個致病因子。先前研究指出高溫生長屬多基因調控,可能參與的基因有:MKT1、RHO2、END3,另外也發現在這些基因上若帶有某些SNP會影響到高溫生長的表現型。我們發現具有高溫生長能力的臨床菌株的定序結果,發現在MKT1 (A1057G)和RHO2 (T271G)處的SNP會造成胺基酸改變,而在這些位置上的等位基因屬異型合子(heterozygous),但沒有高溫生長能力的菌種則無。於是進行四分孢子分離,得到了同型合子的子代。而分離出來的子代中發現只有一株具有和母代一樣強的高溫生長能力,我們將此子代的高溫生長基因(MKT1)送入實驗室菌株中,觀察高溫生長的表現型是否會因此而有所改變,但經此改造的實驗室菌株,其高溫生長能力並未有發現有顯著的變異,這表示只單純改變一個高溫生長基因,並未能夠影響到其表現型。當酵母菌受到高溫壓力之時,細胞內活性氧化自由基會上升,若此時細胞抗氧化壓力的能力不足,細胞就無法存活下去。我們去比較抗高溫的菌株和不耐熱的菌株比較在受到高溫壓力之時其細胞內活性氧化自由基的累積情況,但結果並未發現抗高溫的菌株其活性氧化自由基的累積會比較低。目前我們尚未找到抗高溫生長的關鍵因子,之後仍需進一步的研究。 | zh_TW |
| dc.description.abstract | Saccharomyces. cerevisiae has recognized as “generally regarded as safe” organism, but recent evidence indicated that the clinical isolates were virulent and had been implicated in the induction of a disease. The pathogenic isolates exhibit the ability to grow at 42°C and are capable of pseudohyphal growth. Our lab got three clinical isolates(YYC1、YYC2、YYC3) from NTUH . We found there were two of them having the ability of growth at 42°C and pseudohyphal formation. My target is studying the ability of growth at 42°C. The previous report mapped a S. cerevisiae high temperature growth QTL and identified MKT1, END3, and RHO2 as QTGs. There were some important SNPs (ex.MKT1 A1358G、END3 C733T )contributing to HTG phenotype. In our case, we found that the SNPs in YYC1, MKT1 (A1057G) and RHO2 (T271G), are nonsynonymous changes and heterozygous in these two gene locus. Next, we use tetrad dissection, making the homozygous segregants, try to observe the contribution of these SNPs to HTG. After tetrad dissection analysis, we found that there were few segregants(4/60) having the HTG phenotype. Then, we cloned the MKT1, from one of the segregants which had thermo-tolerance, into a mkt1 deletion strain. However, the clone did not change its phenotype. This indicated that the single genotype alternation did not affect the HTG phenotype. When the yeast cells encounter heat stress, the cellular ROS (reactive oxygen species) will be induced. Excess ROS causes damages by attacking DNA and proteins. Our hypothesis was that the thermo-tolerant strains might have more strong ability to clear up cellular ROS. But the experiment result indicated that the thermo-tolerant strains did not have lower ROS level than thermo-sensitive strains. We still do not find the key factor contribution to the ability of HTG.. It needs advanced researches to figure out the mechanism of high temperature growth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:43:28Z (GMT). No. of bitstreams: 1 ntu-97-R95424019-1.pdf: 3206685 bytes, checksum: 766988a90473f6a450b81030a2bee656 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 總目次
總目次………………………………………………………………I 表目次……………………………………………………………III 圖目次………………………………………………………………IV 縮寫表………………………………………………………………VI 中文摘要…………………………………………………………………1 英文摘要…………………………………………………………………2 緒論…………………………………………………………………3 材料方法 一、菌落尺寸大小試驗……………………………………………7 二、生長曲線7 三、四分孢子分離技術8 四、細胞凝集試驗……………………………………………………8 五、聚合酶連鎖反應…………………………………………………8 六、基因定序………………………………………………………9 七、分子選殖………………………………………………………11 八、存活率試驗……………………………………………………14 九、細胞內活性氧化自由基累積的程度…………………………15 結果 一、臨床菌株的高溫生長表現型:菌落尺寸大小、生長曲線、存活率…17 二、以基因定序手法找出可能影響高溫生長的SNP………………18 三、同型合子子代的高溫生長能力表現型…………………………19 四、分子選殖:MKT1對於高溫生長能力的影響…………………19 五、高溫生長能力和細胞內活性氧化自由基累積程度的關連性…21 討論…………………………………………………………………23 附表……………………………………………………………………27 附圖……………………………………………………………………38 參考文獻………………………………………………………………50 附錄 一、實驗用菌種列表………………………………………………54 二、培養液…………………………………………………………55 三、DCFDA結構式………………………………………………55 表目次 表一 菌種高溫生長表現型:菌落尺寸大小試驗…………………27 表二 YYC1子代高溫生長表現型:菌落尺寸大小試驗…………28 表三 A高溫生長基因的SNP位點分析………………………………30 表三 B胺基酸序列變化分析…………………………………………33 表三 C具高溫生長能力子代的SNP位點基因型分析………………35 表四 四分孢子分離實驗分析………………………………………36 表五 實驗所用的引子………………………………………………37 圖目次 圖一 菌落尺寸大小試驗…………………………………………38 圖二 存活率試驗……………………………………………………39 圖三 在42°C下的生長曲線(YPAD)………………………………40 圖四 細胞凝聚試驗…………………………………………………41 圖五 抽取分子選殖菌株的質體……………………………………42 圖六 利用限制酵素的裁切來確認選殖菌株………………………43 圖七 利用colonyPCR來確認酵母菌轉型作用…………………44 圖八 基因重組實驗的高溫生長表現型:在42°C下的生長曲線(YM-Ura)……………45 圖九 細胞內活性氧化自由基累積的程度:疊圖分析……………46 圖十 細胞內活性氧化自由基累積的程度:溫度的影響…………48 圖十一 細胞內活性氧化自由基累積的程度:受熱時間比較………49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 活性氧化自由基 | zh_TW |
| dc.subject | 釀酒酵母菌 | zh_TW |
| dc.subject | 高溫生長 | zh_TW |
| dc.subject | Saccharomyces cerevisiae | en |
| dc.subject | high temperature growth | en |
| dc.subject | ROS | en |
| dc.title | 探討台灣臨床分離的菌株Saccharomyces cerevisiae主要的致病因子之一:高溫生長能力 | zh_TW |
| dc.title | Analysis of the ability of high temperature growth, one of the major virulence traits, in clinical isolate of Saccharomyces cerevisiae in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑萍(Shwu-Bin Lin),廖淑貞(Shwu-Jen Liaw),楊雅倩(Ya-Chien Yang) | |
| dc.subject.keyword | 釀酒酵母菌,高溫生長,活性氧化自由基, | zh_TW |
| dc.subject.keyword | Saccharomyces cerevisiae,high temperature growth,ROS, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
