請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42029完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富 | |
| dc.contributor.author | Tsai-Yuan Shie | en |
| dc.contributor.author | 謝才淵 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:42:50Z | - |
| dc.date.available | 2010-09-02 | |
| dc.date.copyright | 2008-09-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-30 | |
| dc.identifier.citation | 第一章
[1] Jeong Chul Lee, Viresh Dutta, Jinsu Yoo, Junsin Yi, Jinsoo Song,Kyung Hoon Yoon, Superlattices and Microstructures 42, 369–374 (2007). [2] Kenji Nomura, Hiromichi Ohta, Kazushige Ueda, Toshio Kamiya, Masahiro Hirano, Hideo Hosono, Science 300, 1269 (2003). [3] T. Wagner , T. Waitz , J. Roggenbuck , M. Fröba , C.-D. Kohl , M. Tiemann, Thin Solid Films 515, 8360–8363 (2007). [4] Shih Min Chou , Lay Gaik Teoh , Wei Hao Lai , Yen Hsun Su and Min Hsiung Hon, Sensors 6, 1420-1427 (2006). [5] Björn A. Andersson, “Material Constraints on Technology Evolution: The Case of Scarce Metals andEmerging Energy Technologies”, THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (2001). [6] Lukas Schmidt-Mende, Judith L. MacManus-Driscoll, materialstoday 10, 40-48(2007). [7] Yu-Yun Peng, Tsung-Eong Hsieh and Chia-Hung Hsu, Nanotechnology 17 ,174–180 (2006). [8] A B Djuriˇsi´c, Y H Leung, KH Tam, Y FHsu, L Ding, WKGe, Y C Zhong, KSWong, WK Chan, H L Tam, KWCheah, WMKwok and D L Phillips, Nanotechnology 18, 095702(2007). [9] A.B. Djuriši, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, S. Gwo, APPLIED PHYSICS LETTERS 88, 103107(2006). [10] Chunming Jin, Chunming Jin, Roger J. Narayan, JOURNAL OF APPLIED PHYSICS 98, 083707 (2005). [11] Frank Jones, François Léonard, and A. Alec Talin, Nelson S. Bell, JOURNAL OF APPLIED PHYSICS 102, 014305(2007). [12] Chong Soo Han, Jin Jun, Hyejung Kim, Applied Surface Science 175-176, 567-573(2001). [13] RADHOUANE BEL HADJ TAHAR, NOUREDDINE BEL HADJ TAHAR, JOURNAL OF MATERIALS SCIENCE 40, 5285 – 5289(2005). [14] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, Surface and Coatings Technology 180 –181, 659–662(2004) [15] V. Bhosle, J. T. Prater, Fan Yang and D. Burk, S. R. Forrest, J. Narayan, JOURNAL OF APPLIED PHYSICS 102, 023501(2007) [16] M. de la L. Olvera, H. Go′mez, A. Maldonado, Solar Energy Materials & Solar Cells 91, 1449–1453(2007) [17] Minghua Sun, Qi-Feng Zhang, Jin-Lei Wu, J. Phys. D: Appl. Phys. 40, 3798–3802(2007) [18] Bao-Jen Pong, Bo-Wei Chou, Ching-Jen Pan, Fu-Chun Tsao, Gou-Chung Chi, Proc. of SPIE Vol. 6122 612203-1 [19] C. J. Pan, B. J. Pong, B. W. Chou, G. C. Chi, and C. W. Tu, phys. stat. sol. (c) 3, No. 3, 611–613 (2006) [20] Li Wang, Yong Pu, Wenqing Fang, Jiangnan Dai, Changda Zheng, Chunlan Mo, Chuanbin Xiong, Fengyi Jiang, Thin Solid Films 491, 323 – 327(2005). [21] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, Thin Solid Films 502, 219 – 222(2006). [22] Minrui Wang, Jing Wang, Wen Chen, Yan Cui, Liding Wang, Materials Chemistry and Physics 97, 219–225(2006) [23] M.L. Cui, X.M. Wu, L.J. Zhuge, Y.D. Meng, Vacuum 81, 899–903(2007). [24] Shou-Yi Kuo, Wei-Chun Chen, Fang-I Lai, Chin-Pao Cheng, Hao-Chung Kuo, Shing-Chung Wang, Wen-Feng Hsieh, Journal of Crystal Growth 287, 78–84(2006). [25] N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida, M. Jacquet, Applied Surface Science 252, 5594–5597(2006). [26] Mingsong Wang, Eui Jung Kim, Jin Suk Chung, Eun Woo Shin, Sung Hong Hahn, Ka Eun Lee, and Chinho Park, phys. stat. sol. (a) 203, No. 10, 2418–2425 (2006). [27] CHANGKOOK YOU, SUNHO OH AND SUKYOUNG KIM, Journal of Sol-Gel Science and Technology 21, 49–54(2001). [28] Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, Hye Dong Kim, Sun-Il Kim, APPLIED PHYSICS LETTERS 90, 262106(2007). [29] Chun Li, Guojia Fang, Longyan Yuan, Nishuang Liu, Jun Li, Dejie Li, Xingzhong Zhao, Applied Surface Science 253, 8478–8482(2007). [30] Basavaraj Angadi, H C Park, HWChoi, JWChoi andWK Choi, J. Phys. D: Appl. Phys. 40, 1422–1425(2007). [31] Chin-Ching Lin, Hung-Pei Chen, Hung-Chou Liao, San-Yuan Chen, APPLIED PHYSICS LETTERS 86, 183103(2005). [32] A.Y. Polyakov, N. B. Smirnov, A. V. Govorkov, K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, B. Luo, F. Ren, J. M. Zavada, JOURNAL OF APPLIED PHYSICS 94, 400-406(2003). [33] S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, Journal of Physics and Chemistry of Solids 67, 2351–2357(2006). [34] H.S. Randhawa,M.D. Matthews, R.F. Bunshan, Thin Solid Films 83, 267 (1981). [35] S. Muthukumar, C.R. Gorla, N.W. Emanetoglu, S. Liang, Y. Lu, J. Cryst. Growth 225, 197(2001). [36] W. Tang, D.C. Cameron, Thin Solid Films 238, 83 (1994). [37] J.-H. Lee, B.-O. Park, Mater. Sci. Eng. B 106, 242 (2004). [38] H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, T. Minami, Appl. Surf. Sci.244, 568 (2005). [39] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schoepe, C. Beneking, H.Wagner, A. Loeffl, H.W. Schock, Thin Solid Films 351, 247 (1999). 第二章 [1] W. Tang, D.C. Cameron, Thin Solid Films 238, 83 (1994) [2] L. Vayssieres, Advanced Materials 15, 464-466 (2003) [3] L.J. Van der Pauw, Philips Research Reports 13, 1–9 (1958) [4] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-化學分析儀器”,行政院國家科學委員會精密儀器發展中心,14-16 (1998) [5] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-材料分析儀器”,行政院國家科學委員會精密儀器發展中心,1-3 (1998) [6] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-材料分析儀器”,行政院國家科學委員會精密儀器發展中心,22-24 (1998) [7] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-材料分析儀器”,行政院國家科學委員會精密儀器發展中心,41-44 (1998) [8] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-光學量測儀器”,行政院國家科學委員會精密儀器發展中心,43-44 (1998) 第三章 [1] Li Wang, Yong Pu, Wenqing Fang, Jiangnan Dai, Changda Zheng, Chunlan Mo, Chuanbin Xiong, Fengyi Jiang, Thin Solid Films 491, 323 – 327(2005) [2] Minrui Wang, Jing Wang, Wen Chen, Yan Cui, Liding Wang, Materials Chemistry and Physics 97, 219–225(2006) [3] M.L. Cui, X.M. Wu, L.J. Zhuge, Y.D. Meng, Vacuum 81, 899–903(2007) [4] N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida, M. Jacquet, Applied Surface Science 252, 5594–5597(2006) [5] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, Thin Solid Films 502, 219 – 222(2006) [6] Keh-moh Lin, Paijay Tsai, Materials Science and Engineering B 139, 81–87(2007) [7] A. Jain, P. Sagar, R. M. Mehra, Materials Science-Poland 25, 1 (2007) [8] S. Mridha, D. Basak, Materials Research Bulletin 42, 875–882 (2007) [9] X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue, H.Z. Zhuang, B.Y. Man, Materials Chemistry and Physics 101, 285–290 (2007) [10] Mingsong Wang, Eui Jung Kim, Jin Suk Chung, Eun Woo Shin, Sung Hong Hahn, Ka Eun Lee, and Chinho Park, phys. stat. sol. (a) 203, 2418–2425 (2006) 第四章 [1] Lukas Schmidt-Mende, Judith L. MacManus-Driscoll, materialstoday 10, 40-48(2007) [2] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, Surface and Coatings Technology 180 –181, 659–662(2004) [3] Mingsong Wang, Ka Eun Lee, Sung Hong Hahn, Eui Jung Kim, Sunwook Kim, Jin Suk Chung, Eun Woo Shin, Chinho Park, Materials Letters 61,1118–1121(2007) [4] Keh-moh Lin, Paijay Tsai, Materials Science and Engineering B 139, 81–87(2007) [5] G. J. Fang, D. J. Li, B.-L. Yao, phys. stat. sol. (a) 193, No. 1, 139–152 (2002) [6] Hong-ming Zhou, Dan-qing Yi, Zhi-ming Yu, Lai-rong Xiao, Jian Li, Thin Solid Films 515, 6909–6914(2007) [7] S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, Journal of Physics and Chemistry of Solids 67, 2351–2357(2006) [8] Chin-Ching Lin, Hung-Pei Chen, San-Yuan Chen, Chemical Physics Letters 404, 30–34 (2005) [9] Ye Sun, N. George Ndifor-Angwafor, D. Jason Riley, Michael N.R. Ashfold, Chemical Physics Letters 431, 352–357 (2006) [10] Chun Li, Guojia Fang, Longyan Yuan, Nishuang Liu, Jun Li, Dejie Li, Xingzhong Zhao, Applied Surface Science 253, 8478–8482 (2007) [11] D. H. Zhnng, D. E. Brodiie, Thin Solid Films 257, 58- 62 (1995) 第五章 [1] Chin-Ching Lin, Hung-Pei Chen, San-Yuan Chen, Chemical Physics Letters 404, 30–34 (2005) [2] Chin-Ching Lin, Hung-Pei Chen, Hung-Chou Liao, and San-Yuan Chen, APPLIED PHYSICS LETTERS 86, 183103 (2005) [3] Jinkyoung Yoo, Won Il Park, and Gyu-Chul Yi, J. Vac. Sci. Technol. B 23, 1970-1974 (2005) [4] H. Q. Le, S. Tripathy, and S. J. Chua, APPLIED PHYSICS LETTERS 92, 141910 (2008) [5] Chun Li, Guojia Fang, Longyan Yuan, Nishuang Liu, Jun Li, Dejie Li, Xingzhong Zhao, Applied Surface Science 253, 8478–8482 (2007) [6] Tam’ra-Kay Francis, Akira Ueda, Roberto Aga, Zhengda Pan, Warren. E. Collins, and Richard R. Mu, phys. stat. sol. (c) 3, 3573–3576 (2006) 第六章 [1] Chin-Ching Lin, Hung-Pei Chen, San-Yuan Chen, Chemical Physics Letters 404, 30–34 (2005) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42029 | - |
| dc.description.abstract | 本論文的研究主要在於探討如何能夠提升氧化鋅薄膜的導電能力。在論文之中,我們首先介紹了如何以溶膠-凝膠方法製備氧化鋅薄膜以及以水熱法製備氧化鋅奈米線。接著我們探討了退火、摻雜、電漿等等製程對於氧化鋅薄膜特性的影響,並在最後討論了將氧化鋅奈米線轉換為高導電氧化鋅薄膜的方法。
我們以掃描式電子顯微鏡分析氧化鋅表面的型態對於退火製程所產生的變化,並且以四點探針來量測樣品的電阻率,以外光╱可見光光譜儀分析氧化鋅薄膜在退火前後的光學性質。氧化鋅薄膜在以600˚C左右的溫度退火時能得到較佳的導電品質。若是將氧化鋅薄膜在氮氣的環境下再次退火,也能夠提升薄膜的電性。我們將退火後的氧化鋅薄膜進行氧、氬電漿處理,並且比較此兩種電漿處理的相同與相異之處。氧電漿與氬電漿製程分別能降低氧化鋅薄膜的電阻率至3.15×10-1Ωcm與6.7×10-3Ωcm。從光激發光譜的量測上可以發現,氧電漿處理能夠填補氧化鋅薄膜中的氧空缺使得缺陷變少,晶格結構更加完整而使電子電洞對從能帶遷躍至能帶的直接複合而放出的光增加。而從氬電漿製程後的氧化鋅薄膜的能量散佈光儀圖中可以看出,並未在氧化鋅薄膜上面偵測到氬元素。基於惰性氣體的特質,氬元素無法擴散進入氧空缺之中而使內部缺陷上的懸浮鍵失去活性,並且以這樣的方法提升導電度。我們根據以上等資訊、氧化鋅薄膜表面的型態加上相關的參考文獻,對於電漿製程提升氧化鋅薄膜導電能力的原因進行了推論。我們觀察疊加退火、摻雜以及電漿製程對氧化鋅薄膜的影響。最後證實退火、摻雜以及電漿製程此三種製程無法同時疊加起來而更顯著地提高氧化鋅薄膜的導電能力,相關原因也加以分析。最後,我們用退火及氬電漿製程將氧化鋅奈米線轉換為低電阻的氧化鋅薄膜。由於氧化鋅奈米線藉著生長過程而擁有晶格排列良好的特質,而良好的晶格排列有助於載子的傳輸。我們希望以此能提升最後形成的氧化鋅薄膜的導電特性。我們從掃描式電子顯微鏡的觀察上發現氧化鋅奈米線在經過製程後,確實的轉換為表面凹凸的氧化鋅薄膜。而以此方法製作出來的氧化鋅薄膜電阻率約為2.3×10-2Ωcm,並從X光繞射圖顯現出非常強烈的(002)晶格排列方向。 | zh_TW |
| dc.description.abstract | In this study, we discuss the methods of improving the conductivity of ZnO thin films. First, we fabricate ZnO thin films and ZnO nanorods by using the sol-gel technique and the hydrothermal method separately. Then we investigate the effects of annealing, doping and plasma treatment on the properties of ZnO thin films. Through the experiments, we find that the ZnO thin film can obtain its best conductivity when annealed at around 600˚C. Also, if we post-anneal them in nitrogen, we can improve the electrical properties of ZnO thin films. We compare the effects of Argon and Oxygen plasma treatment on post-annealed ZnO thin films. The resistivity of the ZnO thin films reduce greatly to the value of 3.15×10-1Ωcm and 6.7×10-3Ωcm by Oxygen plasma treatment and Argon plasma treatment. Photoluminescence spectral features with enhanced ultraviolet emission reveal that oxygen ions may diffuse into the oxygen vacancies of ZnO thin film. However, Energy dispersive spectroscopy (EDS) observation shows that there is no Argon atom in the ZnO film after Argon plasma treatment. Because of the non-reactive properties of inert gases, Argon atom may not diffuse into oxygen vacancies and deactivate the dangling bonds associated with the structure defects. We discuss the possible mechanisms for the decrease of resistivity by plasma treatment on the base of the investigations above. Also, we investigate the combination of annealing, doping and plasma treatment to increase the conductivity of ZnO thin films. We discover that the process of doping aluminum to ZnO cannot be combined with Argon plasma treatment effectively. At last, we transform ZnO nanorods into highly conductive ZnO thin film by annealing and plasma treatment. The ZnO thin films produced in this way posses a resistivity of about 2.3×10-2Ωcm and very clear preferred (002) orientation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:42:50Z (GMT). No. of bitstreams: 1 ntu-97-R95941043-1.pdf: 12749092 bytes, checksum: 7c3b333aee648b89a8a596449d938750 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 第一章 前言 1
1.1 氧化鋅材料簡介 1 1.2 應用面: 透明導電薄膜 2 1.3 文獻導覽 3 參考文獻 8 第二章 氧化鋅薄膜以及奈米柱的製作 13 2.1 簡介 13 2.2 氧化鋅薄膜製作與流程 14 2.3 氧化鋅奈米柱製作與流程 16 2.4 量測儀器的介紹與架設 19 參考文獻 26 第三章 退火處理對氧化鋅薄膜各種特性的影響以及分析 27 3.1 實驗動機與設計 27 3.2 量測結果與討論 29 3.3 結論 37 參考文獻 38 第四章 電漿製程對氧化鋅薄膜各種特性的影響以及分析 39 4.1 實驗動機與設計 39 4.2 量測結果與討論 42 4.3 結論 66 參考文獻 67 第五章 將氧化鋅奈米柱轉換為氧化鋅薄膜的製程以及特性分析69 5.1 實驗動機 69 5.2 將氧化鋅奈米柱轉換為氧化鋅薄膜的製作與流程 70 5.3 量測結果與討論 72 5.4 結論 84 參考文獻 85 第六章 總結 86 6.1 論文回顧 86 6.2 未來展望 87 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 退火 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 電漿 | zh_TW |
| dc.subject | 導電薄膜 | zh_TW |
| dc.subject | ZnO | en |
| dc.subject | conductivity | en |
| dc.subject | annealing | en |
| dc.subject | plasma treatment | en |
| dc.title | 利用退火及電漿製程以提昇氧化鋅薄膜導電度之研究 | zh_TW |
| dc.title | Improving electrical properties of ZnO thin films by the combination of annealing and plasma treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君,林浩雄 | |
| dc.subject.keyword | 氧化鋅,電漿,導電薄膜,退火, | zh_TW |
| dc.subject.keyword | ZnO,plasma treatment,annealing,conductivity, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-09-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 12.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
