Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42022
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭振華(Jen-Hwa Guo)
dc.contributor.authorYu-Yan Chenen
dc.contributor.author陳譽元zh_TW
dc.date.accessioned2021-06-15T00:42:26Z-
dc.date.available2008-10-15
dc.date.copyright2008-10-15
dc.date.issued2008
dc.date.submitted2008-09-25
dc.identifier.citation[1] Rafael C. Gonzalez & Richard E. Wood ,〝Digital Image
Processing 2nd〞.
[2] Jenhwa Guo, Sheng-Wen Cheng, Cheng-Yang Ying, and Te-
Chih Liu, “Image Registration for the Underwater
Inspection Using the Maximum a Posteriori Technique,”
IEEE Journal of Ocean Engineering, vol. 28, no. 1,
pp.55-61, Jan. 2003.
[3] Kristof Richmond, Stephen Rock,” An operational real-
time large-scale visual mosaicking and navigation
system,” in Proceedings of the MTS/IEEE OCEANS
Conference,(Boston),IEEE,Sept.2006
[4] A. Singh, “Incremental Estimation of Image-Flow
Using a Kalman Filter,” J. Vis. Commun. Image
Represent., vol. 3, no. 1, pp. 39-57, Mar. 1992.
[5] H. Singh, J. Howland,and O. Pizarro, “Advancesin
large-area photomosaicking underwater,” IEEE Journal
of Oceanic Engineering, vol. 29, pp. 872–886, July
2004
[6] N. Gracias and J. Santos-Victor, “Underwater Video
Mosaics as Visual Navigation Maps,” Computer Vision
and Image Understanding, vol. 79, no. 1, pp. 66-91,
2000.
[7] M. S. Grewal and A. P. Andrews, Kalman Filtering:
Theory and Practice Using MATLAB, 2nd Edition, John
Wiley & Sons, Inc., New York, 2001.
[8] N. R. Gracias, J. P. Costeira, and J. Santos-Victor,
“Linear global mosaics for underwater surveying,”in
4th IFAC/EURON Symposium on Autonomous
Vehicles, IAV04, (Lisbon, Portugal), July 2004.
[9] Gregory A. Baxes, Digital Image Processing: Principles
and Applications, Littleton, Colorado, Sept. 1994.
[10] R. M. Haralick and L. G. Shapiro, Computer and Robot
Vision, Addison-Wesley Publishing Company, Inc., 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42022-
dc.description.abstract使用水下無人載具進行結構物表面攝影記錄工作,常因水中能見度低而必須貼近結構物表面拍攝。局部的影像紀錄必須經由影像鑲嵌技術去拼排成大範圍影像,以做為維修及檢測之根據。影像鑲嵌過程由於亮度不均、影像變形、信號雜訊等因素,產生鑲嵌誤差而次誤差隨著時間累積會造成誤差值的發散,使得所鑲嵌之影像無法被使用。本研究是針對水下影像鑲嵌技術所遭遇的困難,利用多感測器訊號融合與重複的測量,來解決誤差累積與減少影像誤差對鑲嵌結果所造成的影響。本研究使用水下無人載具上所裝配之光學攝影機,在載具移動時拍攝影像,利用相鄰影像重疊部分估測載具之位移,來達到自動鑲嵌。在影像逐一比對的過程中,先將影像轉換成頻域影像,此方法可將影像轉變成週期函數,使影像計算量降低。再者,為了減少影像誤差之影響,本研究採用杜卜勒速度聲納估載具的位置,將此位置資訊與影像估測位移整合,並藉由偵測載具路徑交叉位置之誤差資訊,使用卡曼濾波器之逆向平滑處理,重新排列位置的誤差。本文所提出之方法經由實驗驗證,具有改善整體鑲嵌影像的效果,可以提供未來水下無人載具觀測結構物、海底表面等作業之參考。zh_TW
dc.description.abstractThis work describes an image registration method for underwater inspection tasks. An unmanned underwater vehicle equipped with a Doppler Velocity Log, a compass, and a depth sensor is used as the platform to carry a video camera. Image sequences are captured and each image of the underwater scene is saved along the path. The images are then combined to create a large composite picture of the underwater structure. Features corresponding to the same area of the structure are found in the overlapping region of two images, relative shifts in each image are determined to form image mosaics from the image sequence. The displacements of the video camera can be estimated from the image shifts, but the estimation error of camera’s absolute position might go unbound because small errors accumulate along the surveying path. Sometimes clear features in the underwater scene are hard to determined, a Kalman filter estimator is used to combine image shifts with vehicle motion data to estimate the absolute position of vehicle. In addition, crossover points between the current and former images are monitored, a smoothing process based on the Kalman filter technique along the reverse surveying path is employed to globally minimize the alignment errors in the image chains. Underwater scenes displayed by mosaic of underwater images prove that smooth and robust estimates of underwater image shifts can be obtained by the method proposed by this study.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:42:26Z (GMT). No. of bitstreams: 1
ntu-97-R94525023-1.pdf: 4727597 bytes, checksum: 4ce1e72aac4f0a57bb91b2b1e14ef306 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要...............................................I
Abstract..........................................II
Contents.........................................III
List of Figures....................................V
List of Tables....................................IX
List of Symbols....................................X
1. Introduction
1.1 Background.......................................1
1.2 Overview.........................................2
1.3 Motivation.......................................3
1.4 Thesis Organization..............................4
2. Image Comparing
2.1 Fourier Transform................................5
2.2 LoG Filter.......................................7
2.3 Correlation Operation............................7
2.4 Image Displacement in the Image Frame............13
2.5 Image Displacement in the Terrain Frame..........15

3. Mosaic Smoothing
3.1 Kalman Filter Design.............................17
3.2 Crossover Detection..............................21
3.3 Error Propagation and Reduction..................23
4. Experimental Results
4.1 Experimental Apparatus...........................27
4.2 Forward mosaicking...............................29
4.3 Forward Mosaicking with Backward Smoothing.......35
4.4 Backward Smoothing of Exp II.....................54
5. Conclusions.......................................77
References...........................................78
dc.language.isoen
dc.subject水下檢測zh_TW
dc.subject水下影像zh_TW
dc.subject無人載具zh_TW
dc.subject卡曼濾波器zh_TW
dc.subject相關檢測zh_TW
dc.subject鑲嵌zh_TW
dc.subjectund`erwater inspectionen
dc.subjectunmanned vehicleen
dc.subjectimage registrationen
dc.subjectmosaickingen
dc.subject underwater imageen
dc.subjectKalman filteren
dc.title使用訊息融合降低水下影像鑲嵌誤差之研究zh_TW
dc.titleReducing Error of Image Mosaics by Sensor Data Fusionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭真祥(Jen-Shiang Kouh),鄭逸琳(Yih-Lin Cheng)
dc.subject.keyword水下檢測,無人載具,卡曼濾波器,相關檢測,鑲嵌,水下影像,zh_TW
dc.subject.keywordund`erwater inspection,unmanned vehicle,Kalman filter,image registration,mosaicking, underwater image,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2008-09-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved