請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42014
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江簡富 | |
dc.contributor.author | Shan-Yung Yang | en |
dc.contributor.author | 楊善詠 | zh_TW |
dc.date.accessioned | 2021-06-15T00:42:00Z | - |
dc.date.available | 2010-10-15 | |
dc.date.copyright | 2008-10-15 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-10-11 | |
dc.identifier.citation | [1] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, “A new method of measuring
nuclear magnetic moment,” Phys. Rev., vol. 53, p. 318, 1938. [2] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460-474, 1946. [3] http://en.wikipedia.org/wiki/NMR [4] E. L. Hahn, “Nuclear induction due to free Larmor precession,” Phys. Rev., vol. 77, pp. 297-298, 1950. [5] E. L. Hahn, “Spin echoes,” Phys. Rev., vol. 80, pp. 580-594, 1950. [6] H. Y. Carr, “Steady-state free precession in nuclear magnetic resonance,” Phys. Rev., vol. 112, pp. 1693-1701, 1958. [7] E. D. Becker, J. A. Feretti, and T. C. Farrar, “Driven equilibrium Fourier transform spectroscopy: A new method for nuclear magnetic resonance signal enhancement,” Phys. Rev., vol. 91, pp. 7784-7785, 1969. [8] P. C. Lauterbur, “Image formation by induced local interactions: Examples of employing nuclear magnetic resonance,” Nature, vol. 242, pp. 190-191, 1973. [9] P. Mansfield, “Multi-planar image formation using NMR spin-echos.” J. Phys. C, vol. 10, pp. L55-L58, 1977. [10] http://en.wikipedia.org/wiki/Magnetic resonance imaging [11] W. S. Hinshaw, “Spin mapping: The application of moving gradients to NMR,” Phys. Lett. A, vol. 48, pp. 87-88, 1974. [12] W. S. Hinshaw, “Image formation by nuclear magnetic resonance: The sensitive-point method,” J. Appl. Phys., vol. 47, pp. 3709-3721, 1976. [13] E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore and C. Simaroj, “NMR images by the multiple sensitive point method: Application to larger biological systems,” Phys. Med. Biol., vol. 22, pp. 971-974, 1977. [14] P. Mansfield, A. A. Maudsley, and T. Bains, “Fast scan proton density imaging by NMR,” J. Phys. E, vol. 9, pp. 271-278, 1976. [15] P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine, Academic press, p. 93, 1982. [16] J. R. Mallard, “Magnetic resonance imaging - The Aberdeen perspective on developments in the early years,” Phys. Med. Biol., vol. 51, pp. R45-R60, 2006. [17] http://www.cis.rit.edu/htbooks/mri/ [18] S. Ljunggren, “A simple graphical representation of Fourier-based imaging methods,” J. Magn. Reson., vol. 54, pp. 338-343, 1983. [19] D. B. Twieg, “The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods,” Med. Phys., vol. 10, pp. 610-621, 1983. [20] H. J. Weinmann, R. C. Brasch, W. R. Press and G. E. Wesbey, “Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent,” Am. J. Roentgenol, vol. 142, pp. 619-624, 1984. [21] M. Laniado, H. J. Weinmann, W. Sch‥orner, R. Felix, and U. Speck, “First use of Gd- DTPA/dimeglumine in man,” Physiol. Chem. Phys. Med. NMR, vol. 16, pp. 157-165, 1984. [22] G. A. Johnson, M. B. Thompson, S. L. Gewalt, and C. E. Hayes, “Nuclear magnetic resonance imaging at microscopic resolution,” J. Magn. Reson., vol. 68, pp. 129-137, 1986. [23] C. D. Eccles and P. T. Callaghan, “High resolution imaging - the NMR microscope,” J. Magn. Reson., vol. 68, pp. 393-398, 1986. [24] J. B. Aguayo, S. J. Blackband, J. Schoeniger, M. Mattingly, and M. Hintermann, “Nuclear magnetic resonance imaging of a single cell,” Nature, vol. 322, pp. 190-191, 1986. [25] S. J. Blackband, D. L. Buckley, J. D. Bui, and M. I. Phillips, “NMR microscopy - beginnings and new directions,” Magn. Reson. Mater. Phy., vol. 9, pp. 112-116, 1999. [26] B. Chapman, R. Turner, R. J. Ordidge, M. Doyle, M. Cawley, R. Coxon, P. Glover, and P. Mansfield, “Real-time movie imaging from a single cardiac cycle by NMR,” Magn. Reson. Med., vol. 5, pp. 246-254, 1987. [27] C. L. Dumoulin, S. P. Souza, and H. R. Hart, “Rapid scan magnetic resonance angiography,” Magn. Reson. Med., vol. 5, pp. 238-245, 1987. [28] J. Stepiˇsnik, V. Erˇzen, and M. Kos, “NMR imaging in the earth’s magnetic field,” Magnet. Reson. Med., vol. 15, pp. 386-391, 1990. [29] V. Courtillot and J. L. L. Mou‥el, “Time variations of the earth’s magnetic field: From daily to secular,” Ann. Rev. Earth Pl. Sc., vol. 16, pp. 389-476, 1988. [30] P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum., vol. 68, pp. 4263-4270, 1997. [31] A. Mohoriˇc, G. Planinˇsiˇc, M. Kos, A. Duh, and J. Stepiˇsnik, “Magnetic resonance imaging system based on earth’s magnetic field,” Instrum. Sci. Tech., vol. 32, issue 6, pp. 655-667, 2004. [32] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. M. Cheng, T. J. Brady, and B. R. Rosen., “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci., vol. 89, pp. 5675, 1992. [33] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, “Time course EPI of human brain function during task activation,” Magn. Reson. Med., vol. 25, pp. 390-397, 1992. [34] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer Jr., and A. Wishnia, “Biological magnetic resonance imaging using laser-polarized 129Xe,” Nature, vol. 370, pp. 199-201, 1994. [35] J. M. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging, CRC press, 1998. [36] P. Reimer, P. M. Parizel, and F.-A. Stichnoth, Clinical MR Imaging, 2nd ed., Springer, 2003. [37] M. A. Brown and R. C. Semelka, MRI Basic Principles and Applications, 3rd ed., John Wiley, 2003. [38] B. J. Pichler, M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S. B. Siegel, C. D. Claussen, and S. R. Cherry, “Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med., vol. 47, pp. 639-647, 2006. [39] Z.-P. Liang and P. C. Lauterbur, Principle of Magnetic Resonance Imaging, IEEE press, 1999. [40] J. C. Hoch and A. S. Stern, NMR Data Processing, Wiley-Liss, 1996. [41] J. Mispelter, M. Lupu, and A. Bri﹐cuet, NMR Probeheads For Biophysical and Biomedical Experiments, Imperial College Press, 2006. [42] T. W. Redpath, “Commentary: Signal-to-noise ratio in MRI,” British J. Radiology, vol. 71, pp. 704-707, 1998. [43] D. I. Hoult and P. C. Lauterbur, “The sensitivity of the zeugmatographic experiment involving human samples,” J. Magn. Reaon., vol. 34, pp. 425-433, 1979. [44] C. L. Partain, R. R. Price, J. A. Patton, M. V. Kulkarni, and A. E. James, Jr., Magnetic Resonance Imaging, Physical Principles and Instrumentation, 2nd ed., vol. 2, W. B. Saunders Company, 1988. [45] J. D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, 1975. [46] G. J. Barker and S. C. R. Williams, “Improving resolution in MRI by interleaving data acquisition for increased digitisation rates,” IEE Colloq. Tech. Develop. Clinical NMR in UK, vol. 47, pp. 2/1-2/2, 1991. [47] D. D. L. Chung, “Materials for electromagnetic interference shielding,” J. Mater. Eng. Perform., vol. 9, pp. 350-354, 2000. [48] A. Lacaze, Y. Laumond, J. P. Tavergnier, A. Fevrier, T. Verhaege, B. Dalle, and A. Ansart, “Coils performances of superconducting cables for 50/60 Hz applications,” IEEE Trans. Magn., vol. 27, pp. 2178-2181, 1991. [49] J. H. Bae, K. D. Sim, R. K., Y. K. Kwon, K. S. Ryu, and Y. S. Jo, “The fabrication of superconducting magnet for MRI,” Phys. C, vol. 372-376, part 3, pp. 1342-1345, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42014 | - |
dc.description.abstract | 在本篇論文中,我們提出了一個全新的「時域磁振造影術」架構。相較於現行之「頻域磁振造影」,該架構簡化了梯度磁場的複雜度(只需一個梯度磁場),並大幅減少成像所需時間。
「時域」與「頻域」磁振造影術的主要差異在於處理磁振信號上的不同,我們利用電腦模擬來比較兩種架構間的優缺點。 | zh_TW |
dc.description.abstract | A time-domain magnetic resonance imaging (MRI) technique is proposed to reconstruct the image of sample slice with one set of gradient coils only. Working principles are thoroughly analyzed and compared with conventional Fourier-based techniques to explore their pros and cons. Simulations are conducted to assess the plausibility of this technique for practical use. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:42:00Z (GMT). No. of bitstreams: 1 ntu-97-R95942011-1.pdf: 1127252 bytes, checksum: b17f229d2b7d481d408c2916943c306d (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 論文口試委員審定書 iii
Acknowledgment iv 摘要 v 關鍵字 v Abstract vi Keywords vi List of Figures vii List of Tables viii 1 Introduction 1 2 MRI Parameters 8 3 Theory of Time-Domain MRI 11 4 Solution to Bloch Equation 18 5 Simulations and Discussions 24 5.1 Noise Effect 24 5.2 Practical Factors 26 5.3 Demonstration 27 6 Conclusions 32 Reference 33 | |
dc.language.iso | en | |
dc.title | 時域磁振造影術 | zh_TW |
dc.title | Time-Domain Magnetic Resonance Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾孝文,馮世邁 | |
dc.subject.keyword | 磁振造影術,梯度磁場,時域解析法,雜訊抑制, | zh_TW |
dc.subject.keyword | Magnetic resonance imaging (MRI),gradient field,time domain,noise reduction, | en |
dc.relation.page | 37 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-10-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。