Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富
dc.contributor.authorShan-Yung Yangen
dc.contributor.author楊善詠zh_TW
dc.date.accessioned2021-06-15T00:42:00Z-
dc.date.available2010-10-15
dc.date.copyright2008-10-15
dc.date.issued2008
dc.date.submitted2008-10-11
dc.identifier.citation[1] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, “A new method of measuring
nuclear magnetic moment,” Phys. Rev., vol. 53, p. 318, 1938.
[2] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460-474, 1946.
[3] http://en.wikipedia.org/wiki/NMR
[4] E. L. Hahn, “Nuclear induction due to free Larmor precession,” Phys. Rev., vol. 77, pp.
297-298, 1950.
[5] E. L. Hahn, “Spin echoes,” Phys. Rev., vol. 80, pp. 580-594, 1950.
[6] H. Y. Carr, “Steady-state free precession in nuclear magnetic resonance,” Phys. Rev.,
vol. 112, pp. 1693-1701, 1958.
[7] E. D. Becker, J. A. Feretti, and T. C. Farrar, “Driven equilibrium Fourier transform
spectroscopy: A new method for nuclear magnetic resonance signal enhancement,” Phys.
Rev., vol. 91, pp. 7784-7785, 1969.
[8] P. C. Lauterbur, “Image formation by induced local interactions: Examples of employing
nuclear magnetic resonance,” Nature, vol. 242, pp. 190-191, 1973.
[9] P. Mansfield, “Multi-planar image formation using NMR spin-echos.” J. Phys. C, vol.
10, pp. L55-L58, 1977.
[10] http://en.wikipedia.org/wiki/Magnetic resonance imaging
[11] W. S. Hinshaw, “Spin mapping: The application of moving gradients to NMR,” Phys.
Lett. A, vol. 48, pp. 87-88, 1974.
[12] W. S. Hinshaw, “Image formation by nuclear magnetic resonance: The sensitive-point
method,” J. Appl. Phys., vol. 47, pp. 3709-3721, 1976.
[13] E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore and C.
Simaroj, “NMR images by the multiple sensitive point method: Application to larger
biological systems,” Phys. Med. Biol., vol. 22, pp. 971-974, 1977.
[14] P. Mansfield, A. A. Maudsley, and T. Bains, “Fast scan proton density imaging by
NMR,” J. Phys. E, vol. 9, pp. 271-278, 1976.
[15] P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine, Academic press, p. 93,
1982.
[16] J. R. Mallard, “Magnetic resonance imaging - The Aberdeen perspective on developments
in the early years,” Phys. Med. Biol., vol. 51, pp. R45-R60, 2006.
[17] http://www.cis.rit.edu/htbooks/mri/
[18] S. Ljunggren, “A simple graphical representation of Fourier-based imaging methods,”
J. Magn. Reson., vol. 54, pp. 338-343, 1983.
[19] D. B. Twieg, “The k-trajectory formulation of the NMR imaging process with applications
in analysis and synthesis of imaging methods,” Med. Phys., vol. 10, pp. 610-621,
1983.
[20] H. J. Weinmann, R. C. Brasch, W. R. Press and G. E. Wesbey, “Characteristics of
gadolinium-DTPA complex: A potential NMR contrast agent,” Am. J. Roentgenol, vol.
142, pp. 619-624, 1984.
[21] M. Laniado, H. J. Weinmann, W. Sch‥orner, R. Felix, and U. Speck, “First use of Gd-
DTPA/dimeglumine in man,” Physiol. Chem. Phys. Med. NMR, vol. 16, pp. 157-165,
1984.
[22] G. A. Johnson, M. B. Thompson, S. L. Gewalt, and C. E. Hayes, “Nuclear magnetic
resonance imaging at microscopic resolution,” J. Magn. Reson., vol. 68, pp. 129-137,
1986.
[23] C. D. Eccles and P. T. Callaghan, “High resolution imaging - the NMR microscope,” J.
Magn. Reson., vol. 68, pp. 393-398, 1986.
[24] J. B. Aguayo, S. J. Blackband, J. Schoeniger, M. Mattingly, and M. Hintermann, “Nuclear
magnetic resonance imaging of a single cell,” Nature, vol. 322, pp. 190-191, 1986.
[25] S. J. Blackband, D. L. Buckley, J. D. Bui, and M. I. Phillips, “NMR microscopy -
beginnings and new directions,” Magn. Reson. Mater. Phy., vol. 9, pp. 112-116, 1999.
[26] B. Chapman, R. Turner, R. J. Ordidge, M. Doyle, M. Cawley, R. Coxon, P. Glover, and
P. Mansfield, “Real-time movie imaging from a single cardiac cycle by NMR,” Magn.
Reson. Med., vol. 5, pp. 246-254, 1987.
[27] C. L. Dumoulin, S. P. Souza, and H. R. Hart, “Rapid scan magnetic resonance angiography,”
Magn. Reson. Med., vol. 5, pp. 238-245, 1987.
[28] J. Stepiˇsnik, V. Erˇzen, and M. Kos, “NMR imaging in the earth’s magnetic field,”
Magnet. Reson. Med., vol. 15, pp. 386-391, 1990.
[29] V. Courtillot and J. L. L. Mou‥el, “Time variations of the earth’s magnetic field: From
daily to secular,” Ann. Rev. Earth Pl. Sc., vol. 16, pp. 389-476, 1988.
[30] P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic
resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion
under Antarctic conditions,” Rev. Sci. Instrum., vol. 68, pp. 4263-4270, 1997.
[31] A. Mohoriˇc, G. Planinˇsiˇc, M. Kos, A. Duh, and J. Stepiˇsnik, “Magnetic resonance
imaging system based on earth’s magnetic field,” Instrum. Sci. Tech., vol. 32, issue 6,
pp. 655-667, 2004.
[32] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P.
Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. M. Cheng, T.
J. Brady, and B. R. Rosen., “Dynamic magnetic resonance imaging of human brain
activity during primary sensory stimulation,” Proc. Natl. Acad. Sci., vol. 89, pp. 5675,
1992.
[33] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, “Time course
EPI of human brain function during task activation,” Magn. Reson. Med., vol. 25, pp.
390-397, 1992.
[34] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer Jr., and A.
Wishnia, “Biological magnetic resonance imaging using laser-polarized 129Xe,” Nature,
vol. 370, pp. 199-201, 1994.
[35] J. M. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging, CRC
press, 1998.
[36] P. Reimer, P. M. Parizel, and F.-A. Stichnoth, Clinical MR Imaging, 2nd ed., Springer,
2003.
[37] M. A. Brown and R. C. Semelka, MRI Basic Principles and Applications, 3rd ed., John
Wiley, 2003.
[38] B. J. Pichler, M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S.
B. Siegel, C. D. Claussen, and S. R. Cherry, “Performance test of an LSO-APD detector
in a 7-T MRI scanner for simultaneous PET/MRI,” J. Nucl. Med., vol. 47, pp. 639-647,
2006.
[39] Z.-P. Liang and P. C. Lauterbur, Principle of Magnetic Resonance Imaging, IEEE press,
1999.
[40] J. C. Hoch and A. S. Stern, NMR Data Processing, Wiley-Liss, 1996.
[41] J. Mispelter, M. Lupu, and A. Bri﹐cuet, NMR Probeheads For Biophysical and Biomedical
Experiments, Imperial College Press, 2006.
[42] T. W. Redpath, “Commentary: Signal-to-noise ratio in MRI,” British J. Radiology, vol.
71, pp. 704-707, 1998.
[43] D. I. Hoult and P. C. Lauterbur, “The sensitivity of the zeugmatographic experiment
involving human samples,” J. Magn. Reaon., vol. 34, pp. 425-433, 1979.
[44] C. L. Partain, R. R. Price, J. A. Patton, M. V. Kulkarni, and A. E. James, Jr., Magnetic
Resonance Imaging, Physical Principles and Instrumentation, 2nd ed., vol. 2, W. B.
Saunders Company, 1988.
[45] J. D. Jackson, Classical Electrodynamics, 2nd ed., Wiley, 1975.
[46] G. J. Barker and S. C. R. Williams, “Improving resolution in MRI by interleaving data
acquisition for increased digitisation rates,” IEE Colloq. Tech. Develop. Clinical NMR
in UK, vol. 47, pp. 2/1-2/2, 1991.
[47] D. D. L. Chung, “Materials for electromagnetic interference shielding,” J. Mater. Eng.
Perform., vol. 9, pp. 350-354, 2000.
[48] A. Lacaze, Y. Laumond, J. P. Tavergnier, A. Fevrier, T. Verhaege, B. Dalle, and A.
Ansart, “Coils performances of superconducting cables for 50/60 Hz applications,” IEEE
Trans. Magn., vol. 27, pp. 2178-2181, 1991.
[49] J. H. Bae, K. D. Sim, R. K., Y. K. Kwon, K. S. Ryu, and Y. S. Jo, “The fabrication of
superconducting magnet for MRI,” Phys. C, vol. 372-376, part 3, pp. 1342-1345, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42014-
dc.description.abstract在本篇論文中,我們提出了一個全新的「時域磁振造影術」架構。相較於現行之「頻域磁振造影」,該架構簡化了梯度磁場的複雜度(只需一個梯度磁場),並大幅減少成像所需時間。
  「時域」與「頻域」磁振造影術的主要差異在於處理磁振信號上的不同,我們利用電腦模擬來比較兩種架構間的優缺點。
zh_TW
dc.description.abstractA time-domain magnetic resonance imaging (MRI) technique is proposed to reconstruct the image of sample slice with one set of gradient coils only. Working principles are thoroughly analyzed and compared with conventional Fourier-based techniques to explore their pros and cons. Simulations are conducted to assess the plausibility of this technique for practical use.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:42:00Z (GMT). No. of bitstreams: 1
ntu-97-R95942011-1.pdf: 1127252 bytes, checksum: b17f229d2b7d481d408c2916943c306d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員審定書 iii
Acknowledgment iv
摘要 v
關鍵字 v
Abstract vi
Keywords vi
List of Figures vii
List of Tables viii
1 Introduction 1
2 MRI Parameters 8
3 Theory of Time-Domain MRI 11
4 Solution to Bloch Equation 18
5 Simulations and Discussions 24
5.1 Noise Effect 24
5.2 Practical Factors 26
5.3 Demonstration 27
6 Conclusions 32
Reference 33
dc.language.isoen
dc.title時域磁振造影術zh_TW
dc.titleTime-Domain Magnetic Resonance Imagingen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾孝文,馮世邁
dc.subject.keyword磁振造影術,梯度磁場,時域解析法,雜訊抑制,zh_TW
dc.subject.keywordMagnetic resonance imaging (MRI),gradient field,time domain,noise reduction,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2008-10-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved