請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
| dc.contributor.author | Chia-Hung Liao | en |
| dc.contributor.author | 廖家鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:41:13Z | - |
| dc.date.available | 2011-12-01 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-14 | |
| dc.identifier.citation | [1] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
[2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature 391, 667-669 (1998). [3] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007). [4] S. M. Nie, and S. R. Emery, 'Probing single molecules and single nanoparticles by surface enhanced Raman scattering,' Science 275, 1102 (1997). [5] J. Jiang, K. Bosnick, M. Maillard, and L. Brus, 'Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,' J. Phys. Chem. B 107, 9964–9972 (2003). [6] A. Gopinath1, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, 'Deterministic aperiodic arrays of metal nanoparticles for surface enhanced Raman scattering,' Opt. Express 17, 3741-3753 (2009). [7] K. Choi, H. Youn, K. Kim, and J. Choi, 'Sensitivity enhancement of surface plasmon resonance biosensor with colloidal gold,' Biotech. 3, 19-23 (1998). [8] E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, 'Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,' Nano Lett. 7, 1256-1263 (2007). [9] L. Yang, Bo Yan, W. R. Premasiri, L. D. Ziegler, L. Dal Negro and B. M. Reinhard, 'Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates,' Adv. Funct. Mater. 20, 2619-2628 (2010). [10] Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, 'A multi-functional plasmonic biosensor,' Opt. Express 18, 9561-9569 (2010). [11] K. R. Catchpole, and S. Pillai, 'Surface plasmons for enhanced silicon light-emitting diodes and solar cells,' Journal of luminescence 121, 315-318 (2006.) [12] J. Y. Wang, Y. W. Kiang, and C. C. Yang, 'Emission enhancement behaviors in the coupling between surface plasmon polariton on one-dimensional metallic grating and light emitter,' Appl. Phys. Lett. 91, 233104 (2007). [13] E. J. A. Kroekenstoel, E. Verhagen, R. J. Walters, L. Kuipers, and A. Polman, 'Enhanced spontaneous emission rate in annular plasmonic nanocavities,' Appl. Phys. Lett. 95, 263106 (2009). [14] D. M. Schaadt, B. Feng, and E. T. Yu, 'Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,' Appl. Phys. Lett. 86, 063106 (2005). [15] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, 'Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,' Appl. Phys. Lett. 89, 093103 (2006). [16] J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi 'Plasmonic excitation of organic double heterostructure solar cells,' Appl. Phys. Lett. 90, 121102 (2007) [17] C. Rockstuhl, S. Fahr, and F. Lederer, 'Absorption enhancement in solar cells by localized plasmon polaritons,' J. Appl. Phys. 104, 123102 (2008). [18] J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, 'Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,' Opt. Express 18, 2682-2694 (2010). [19] D. Huang, E. A. Swanson, C. P. Lin, J. J. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991). [20] Amy L. Oldenburg, 'Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,' Opt. Express 14, 6724-6738 (2006). [21] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, 'Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulation.' J. Biomed. Opt. 14, 021017 (2009). [22] H. Y. Tseng, C. K. Lee, S. Y. Wu, T. T. Chi, K. M. Yang, J. Y. Wang, Y. W. kiang, C. C. Yang, M. T. Tsai, Y. C. Wu, H. Y. E. Chou and C. P. Chiang, 'Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,' Nanotech. 21, 295102 (2010). [23] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y Wang, J. L. Connolly and J. G. Fujimoto, 'Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,' Opt. Lett. 35, 700-702 (2010). [24] B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin and N. Khlebtsov, 'Optical amplification of photothermal therapy with gold nanoparticles and nanocluster,' Nanotech 17, 5167-5179 (2006). [25] I. H. El-Sayed, X. Huang and M. A. El-Sayed, 'Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,' Cancer Lett. 239, 129-135 (2006). [26] X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, 'Plasmonic photothermal therapy (PPTT) using gold nanoparticles,' Lasers Med. Sci. 23, 217-228 (2007). [27] I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov and V. V. Tuchin, 'Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,' Medical Laser Apl. 22, 199-206 (2007). [28] A. M. Elliott, J. Wang, A. M. Shetty, J. Schwartz, J. D. Hazle, and R. J. Stafford, 'Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis,' SPIE 6865, 68650Q1-68650Q8 (2008). [29] P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, 'Optical absorbance of silver oblate particles, substrate and shape effect,' Surf. Sci. 217, 384 (1989). [30] K. L. Kelly, E. Coronado, L. Zhao and G. C. Schatz, 'The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,' J. Phys. Chem. B 107, 668-677 (2003). [31] Shuo-Yen Wu, Numerical Study on the Behaviors of Localized Surface Plasmon Resonances of Au Nanoparticles (Master Thesis, Institute of photonics and optoelectronics, National Taiwan University, Taiwan, 2007). [32] Mark I. Stockman, 'Spasers explained,' Nature 2, 327-329 (2008). [33] Jian Zu, 'Local environment dependent linewidth of plasmon absorption in gold nanoshell- Effects of local field polarization,' Appl. Phys. Lett. 92, 241919 (2008). [34] J. Gao, C. M. Bender, and C. J. Murphy, 'Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution,' Langmuir 19, 9065-9070 (2003). [35] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, 'Anisotropic metal nanoparticles: Synthesis, assembly, and optical application,' J. Phys. Chem. B 109, 13857-13870 (2005). [36] T. S. Troutman, J. K. Barton and M. Romanowski, 'Optical coherence tomography with plasmon resonant nanorods of gold,' Opt. Lett. 32, 1438-1440 (2009). [37] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant and F. J. García de Abajo, 'Optical properties of gold nanorings,' Phys. Rev. Lett. 90, 057401 (2003). [38] J. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li and Y. Xia, 'Gold nanocages: Engineering their structure for biomedical applications,' Adv. Mater. 17, 2255-22261 (2005). [39] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia and X. Li, 'Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,' Nano Lett. 7, 1318-1322 (2007). [40] L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li and Y. Xia, 'A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,' ACS Nano 2, 1645-1652 (2008). [41] T. S. Troutman, J. K. Barton and M. Romanowski, 'Biodegradable plasmon resonant nanoshells,' Adv. Mater. 20, 2604-2608 (2008). [42] T. S. Troutman, S. J. Leung, and M. Romanowski, 'Light-induced content release from plasmon-resonant liposomes,' Adv. Mater. 21, 2334-2338 (2009). [43] S. J. Yoon, S. Mallidi, J. M. Tam, J. O. Tam, A. Murthy, K. P. Johnston, K. V. Sokolov and S. Y. Emelianov, 'Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging,' Opt. Lett. 35, 3751-3753 (2010). [44] S. Zou and G. C. Schatz, 'Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable width,' Nanotech. 17, 2813-2820(2006) [45] C. Forestiere, G. Miano, S. V. Boriskina and L. Dal Negro, 'The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,' Opt. Express 17, 9648-9661 (2009). [46] C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano and Luca Dal Negro, 'Particle-swarm optimization of broadband nanoplasmonic arrays,' Opt. Lett. 35, 133-135 (2010). [47] Svetlana V. Boriskina, and Luca Dal Negro, 'Multiple-wavelength plasmonic nanoantennas,' Opt. Lett. 35, 538-540 (2010). [48] J. Li, Y. Gu and Q. Gong, 'Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays,' Opt. Express 18, 17684-17697 (2010). [49] A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Boston-London, 1995). [50] Strang, Gilbert; Fix, George, An Analysis of The Finite Element Method (Prentice Hall, 1973) [51] D. W. Brandl, N. A. Mirin, and P. Nordlander, 'Plasmon modes of nanospheres trimers and quadrumers,' J. Phys. Chem. 110, 12302-12310 (2006). [52] J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, 'Self-assembled plasmonic nanoparticle clusters,' Science 328, 1135-1138 (2010). [53] K. M. Chen, 'A mathematical formulation of the equivalence principle,' IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989). [54] J. Y. Wang, C. C. Yang, and Y. W. Kiang, 'Numerical Simulation on surface plasmon polariton behaviors in Periodic Metal-Dielectric Structures Using a Plan-Wave-Assisted Boundary Integral-Equation Method,' Opt. Express 15, 9048-9062 (2007). [55] Y.-L. Xu, 'Electromagnetic scattering by an aggregate of spheres, ' Appl. Opt. 34, 4573-4588 (1995). [56] T. Wriedt, 'A review of elastic light scattering theories, ' Part. Part. Syst. Charact. 15, 67–74 (1998). [57] T. Wriedt and A. Doicu, Light Scattering by Systems of Particles (Springer, Berlin, 2006). [58] E. M. Purcell and C. R. Pennypacker, 'Scattering and absorption of light by nonspherical dielectric grains,' Astrophys. J. 186, 705-714(1973). [59] B. T. Draine, 'The discrete dipole approximation and its application to interstellar graphite dust,' Astrophys. J. 333, 848-872(1988). [60] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons Inc., New York, 1998). [61] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991). [62] C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989). [63] J. P. Kottmann, and O. J. F. Martin, 'Retardation-induced plasmon resonances in coupled nanoparticles,' Opt. Lett. 26, 1096-1098 (2001). [64] P. Mallet, C. A. Guérin, and A. Sentenac, 'Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy,' Phys. Rev. B 72, 014205(2005). [65] A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, New York, 1999). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41998 | - |
| dc.description.abstract | 本論文中,吾人提出一套新穎的簡化邊界積分方程(SBIE)法,以模擬均質空間中多個任意分佈之金奈米球的散射、吸收與侷域電磁場分佈。吾人將SBIE與商業軟體COMSOL所計算之近場作比較,發現兩者相似度高,而且計算多個奈米粒子時,SBIE的計算效率遠勝COMSOL。接著將金奈米球排成各式一維、二維和三維的陣列,模擬結果顯示侷域表面電漿子(LSP)共振強度大幅提升,且其頻寬亦可拓寬至近紅外光波段。吾人亦發現,藉由改變金奈米球的幾何尺寸、粒子間距、奈米球總數、環境的介電常數與各式排列,集體的LSP共振將有顯著可調頻的效果。值得一提的是,此SBIE法比常用之耦合電偶極近似法更嚴謹,更有潛力處理具有不同尺寸、不同形狀與不同材質等的三維多體散射問題。易言之,此套彈性度高的SBIE法有助於設計各式新穎的表面電漿子元件。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a novel simplified boundary integral-equation (SBIE) method for investigating the scattering, absorption and field localization properties of multiple gold nanospheres (NSs) arbitrarily distributed in a homogeneous space. By comparing with the commercial software COMSOL, simulation results of the near-field patterns confirm the validity of the SBIE method. Meantime, we find that the SBIE is much more efficient than COMSOL for treating a large number of nanoparticles. Then, we arrange the gold NSs as one-, two- and three-dimensional arrays to further test our program. It is found that the localized surface plasmon (LSP) resonance can be enhanced and widely broadened to the near infrared (NIR) range. We also find that the LSP resonance can be significantly tuned by varying the constituent nanoparticle geometries, interparticle separation, total NS number, dielectric environment, arrangement of distributions, etc. Note that, the SBIE is more rigorous than the conventional coupled-dipole approximation (CDA) model and has the potential to cope with scattering problems for multiple objects with different sizes, shapes and materials. In other words, this versatile SBIE method is helpful for the design of a variety of novel plasmonic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:41:13Z (GMT). No. of bitstreams: 1 ntu-100-R97941089-1.pdf: 7046223 bytes, checksum: 1a9992c15f4307c441aad49a1d76aa96 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction.......................................................................1
1.1 Applications of LSPRs on Metallic Nanoparticles........................2 1.2 Optical Properties of Multiple MNPs............................................3 1.3 Previous Efforts and Limitations...................................................4 1.4 Motivation for Developing a New Simulation Method.................7 1.5 Thesis Organization.......................................................................8 Chapter 2 Simplified Boundary Integral-Equation (SBIE) Method................................................................................9 2.1 Solving Problem of Multiple scatterers with BIEM......................9 2.2 Ideas for Simplifying BIEM........................................................14 2.3 Basis Expansion and Discretization............................................16 2.4 Matrix Representation of the SBIE.............................................18 Chapter 3 Program Testing.............................................................23 3.1 Near Field Pattern Testing...........................................................23 3.2 Scattering Spectra........................................................................25 3.3 Internal Electric Field..................................................................26 3.4 Distribution of the Equivalent Surface Current Densities...........26 3.5 Discussions..................................................................................27 Chapter 4 Simulation Results.........................................................36 4.1 Multiple Nanoparticles with 1D and 2-D Distributions..............37 4.2 Optical Properties for Cubic Plasmonic Crystals........................40 4.2.1 Cubic PCs with 5x5x5 NSs.................................................41 4.2.2 Cubic PCs with 7x7x7 NSs.................................................42 4.2.3 Further investigations for the cubic PC with 7x7x7 NSs....44 4.3 Optical Properties for Nano-clusters...........................................50 4.3.1 Cuboid cylinder nano-cluster (CCNC) ...............................50 4.3.2 Hexagonal cylinder nano-cluster (HCNC) .........................52 4.3.3 Triangular cylinder nano-cluster (TCNC) ..........................54 4.3.4 Ring nano-cluster (RNC) ....................................................57 4.3.5 Sphere nano-cluster (SNC) .................................................58 Chapter 5 Conclusions......................................................................90 Appendix A Calculation of Self-Term..........................................92 Appendix A Calculation of Charge-Term...................................95 References.............................................................................................98 | |
| dc.language.iso | en | |
| dc.subject | 吸收 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 金屬奈米粒子 | zh_TW |
| dc.subject | 邊界積分方程法 | zh_TW |
| dc.subject | 散射 | zh_TW |
| dc.subject | boundary integral-equation | en |
| dc.subject | absorption | en |
| dc.subject | scattering | en |
| dc.subject | surface plasmon | en |
| dc.subject | metallic nanoparticle | en |
| dc.title | 多個金屬奈米粒子電磁場分佈之數值模擬 | zh_TW |
| dc.title | Numerical Simulation on Electromagnetic Field Distribution of Multiple Metallic Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊志忠(C. C. Yang) | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-chun Chang),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 表面電漿子,金屬奈米粒子,邊界積分方程法,散射,吸收, | zh_TW |
| dc.subject.keyword | surface plasmon,metallic nanoparticle,boundary integral-equation,scattering,absorption, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
