Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林發暄(Fa-Hsuan Lin)
dc.contributor.authorYu-Chen Chouen
dc.contributor.author周育震zh_TW
dc.date.accessioned2021-06-15T00:41:04Z-
dc.date.available2010-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1 Ogawa, S., T. M. Lee, et al. (1990). 'Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.' Magn Reson Med 14(1): 68-78.
2 Ogawa, S., T. M. Lee, et al. (1990). 'Brain magnetic resonance imaging with contrast dependent on blood oxygenation.' Proc Natl Acad Sci U S A 87(24): 9868-72.
3 Kwong, K. K., J. W. Belliveau, et al. (1992). 'Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.' Proc Natl Acad Sci U S A 89(12): 5675-9
4 Bollen KA (1989) Structural equations with latent variables. New York: John Wiley.
5 Buchel, C. and K. J. Friston (1997). 'Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI.' Cereb Cortex 7(8): 768-78.
6 Rogers, B. P., V. L. Morgan, et al. (2007). 'Assessing functional connectivity in the human brain by fMRI.' Magn Reson Imaging 25(10): 1347-57.
7 Astolfi, L., F. Cincotti, et al. (2004). 'Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.' Magn Reson Imaging 22(10): 1457-70.
8 Winder, R., C. R. Cortes, et al. (2007). 'Functional connectivity in fMRI: A modeling approach for estimation and for relating to local circuits.' Neuroimage 34(3): 1093-107.
9 Stein, J. L., L. M. Wiedholz, et al. (2007). 'A validated network of effective amygdala connectivity.' Neuroimage 36(3): 736-45.
10 Friston, K. J. and C. Buchel (2000). 'Attentional modulation of effective connectivity from V2 to V5/MT in humans.' Proc Natl Acad Sci U S A 97(13): 7591-6.
11 Friston, K. J. (1994) “Functional and Effective connectivity in neuroimaging: A synthesis.” Human Brain Mapping 2:56-78
12 Johnson, R. A. and Wichern, D. W. Applied Multivariate Statistical Analysis, 6th ed., Pearson Education, 2007
13 Zhuang, J., S. LaConte, et al. (2005). 'Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination.' Neuroimage 25(2): 462-70.
14 Segers, L. S., S. C. Nuding, et al. (2008). 'Functional connectivity in the pontomedullary respiratory network.' J Neurophysiol 100(4): 1749-69.
15 Supekar, K., V. Menon, et al. (2008). 'Network analysis of intrinsic functional brain connectivity in Alzheimer's disease.' PLoS Comput Biol 4(6): e1000100.
16 Qin, W., J. Tian, et al. (2008). 'FMRI Connectivity Analysis of Acupuncture Effects on an Amygdala-Associated Brain Network.' Mol Pain 4(1): 55.
17 Zhang, Z. Q., G. M. Lu, et al. (2008). '[Resting functional MRI with default mode-based functional connectivity analysis for localization of epileptic activity].' Zhonghua Wai Ke Za Zhi 46(6): 427-30.
18 Friston, K. J., & Ashburner, J. T. (Eds.). (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Academic Press
19 Montgomery, D.D., & Runger, G..C. (Eds). (2007). Applied Statistics and Probability for Engineers, 4th Ed., Asia: John Wiley & Sons
20 Smith, A. M., B. K. Lewis, et al. (1999). 'Investigation of low frequency drift in fMRI signal.' Neuroimage 9(5): 526-33.
21 Jezzard, P., Paul, M. M., (Eds). (2001). Functional MRI: An Introduction to Methods, New York: Oxford.
22 Bernstein, M. A., King, K. F.(Eds). (2004). Handbook of MRI Pulse Sequences, MA: Elsevier.
23 A. R. McIntosh and F. Gonzalez-Lima. (1994). “Structural equation modeling and its application to network analysis in functional brain imaging.” Human Brain Mapping 2:2-22.
24 Sato, J. R., E. A. Junior, et al. (2006). 'A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality.' Neuroimage 31(1): 187-96.
25 de Araujo, D. B., W. Tedeschi, et al. (2003). 'Shannon entropy applied to the analysis of event-related fMRI time series.' Neuroimage 20(1): 311-7.
26 Tulving, E., S. Kapur, et al. (1994). 'Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition.' Proc Natl Acad Sci U S A 91(6): 2012-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41995-
dc.description.abstract在這篇研究中,我們以結構方程式模型(Structural Equation Modeling, SEM)來估計由功能性磁振造影(functional magnetic resonance imaging, fMRI)記錄下的人腦內各個活動區域之間的交互作用,藉此來研究人腦受到刺激時不同區域之間的有效連結(effective connectivity)。由於功能性磁振造影訊噪比(signal-to-noise ratio, SNR)不高,因此本論文專注研究雜訊對SEM估計結果的影響。首先我們使用數值模擬的方法,來找出結構方程式模型不同區域之間的路徑係數(path coefficients)在受到不同訊噪比所造成的影響。另外,由於功能性磁振造影在時間解析度上較差,需要較長的時間來取樣,所以我們每回實驗所能取得的時間序列長度有限。因此在資料長度不同的情況下,我們估計訊號長度對結構方程式模型的路徑係數分布情況所產生的影響。在本篇論文中,我們也將結構方程式模型運用到兩種功能性磁振造影影像實驗(視覺認知的實驗以及針灸刺激實驗)上。這篇研究中的分析方法可以提供資訊讓我們對已知的結構方程式模型內部區域連結進行修改,並且對計算出的連結係數提供統計推論。這種方法也能用在其它人腦功能性影像資料上。zh_TW
dc.description.abstractThis study aims at optimizing Structural Equation Modeling (SEM) analysis in order to accurately estimate the effective connectivity between active brain regions elucidated by the functional magnetic resonance imaging (fMRI) of the human brain during tasks and cognition. Since the empirical fMRI data are of relatively low signal-to-noise ratio (SNR), we are interested in the effects of noises over SEM estimates. First, we use numerical simulation to evaluate the SNR sensitivity of the estimated path coefficients in the SEM. In addition, we also investigate the dependency of path coefficients on the number of data samples, which are practically limited by the relative slow sampling rate (~2 second per volume). Based on the estimated distributions of path coefficients, we quantify the variability of the path coefficients when SNRs and data lengths vary. In this thesis, we also apply the SEM to respective in vivo fMRI experiments to study causal modulations among brain areas during visual cognition and acupuncture stimulus. The SEM analysis developed in this thesis can suggest likely modifications of the a priori directional connectivity required in the traditional SEM and offers statistical inferences on the path coefficients. This method can be used for other brain imaging data.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:41:04Z (GMT). No. of bitstreams: 1
ntu-98-R96548054-1.pdf: 1793171 bytes, checksum: f378fd4b9a8d88640e4784a2126eac8a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsLIST OF CONTENTS II
LIST OF FIGURES VI
LIST OF TABLES IX
中文摘要 XI
ABSTRACT XII
1. INTRODUCTION 1
2. MATERIAL AND METHODS 3
2.1. COVARIANCE MATRIX 3
2.2. STRUCTURAL EQUATION MODELING 4
2.2.1. Maximum likelihood estimation 8
2.2.2. Modification index 10
2.3. STATISTICAL TESTS 12
2.3.1. Chi-square test 12
2.3.2. One-sample t-test 13
2.3.3. Paired t-test 13
3. SIMULATIONS 15
3.1. INTRODUCTION 15
3.2. CONSTRUCT AN EFFECTIVE CONNECTIVITY MODEL 16
3.3. SIMULATE THE TIME SERIES 17
3.4. SIMULATE THE NOISE 19
3.5. SIMULATION PARAMETER 20
3.6. RESULTS AND DISCUSSIONS 21
3.6.1. Normal distribution of estimated path coefficients 21
3.6.2. Effect of data length 22
3.6.3. Effect of noise 25
4. APPLICATION OF THE SEM TO FMRI 31
4.1. INTRODUCTION 31
4.1.1. SPM preprocessing 31
4.1.2. Realignment 32
4.1.3. Slice timing correction 32
4.1.4. Coregisteration 33
4.1.5. Normalization 34
4.2. GENERAL LINEAR MODEL 35
4.3. LIKELIHOOD RATIO TEST 38
4.4. VISUAL COGNITION EXPERIMENT 40
4.4.1. Stimulus, task, and data acquisition parameters 40
4.4.2. Mapping of active brain areas 42
4.4.3. SEM analysis 45
4.4.4. Results 46
4.4.4.1. Original Model 46
4.4.4.2. The model with added path R10/L46 to B22 52
4.4.5. Discussion 57
4.5. EXPERIMENT OF ACUPUNCTURE STIMULATION 61
4.5.1. Stimulation and data preprocessing 61
4.5.2. Results 63
4.5.2.1. SEM result using time series without GLM processing 63
4.5.2.2. SEM result using time series with GLM processing 68
4.5.3. Discussion 73
5. CONCLUSION 76
GLOSSARY 77
REFERENCES 79
dc.language.isoen
dc.title結構方程式模型運用在人腦功能性磁振造影上之研究zh_TW
dc.titleStructural Equation Modeling on the Functional Magnetic Resonance Imaging of the Human Brainen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾文毅(Wen-Yih Tseng),蔡尚岳,郭文瑞,莊子肇
dc.subject.keyword結構方程式模型,功能性磁振造影,有效連結,路徑係數,視覺認知,zh_TW
dc.subject.keywordStructural Equation Modeling,SEM,functional Resonance Magnetic,Imaging,fMRI,effective connectivity,path coefficient,visual cognition,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved