請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖(Tzong-Lin Wu) | |
| dc.contributor.author | Cheng-Hung Shih | en |
| dc.contributor.author | 施政宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:38:26Z | - |
| dc.date.available | 2010-11-20 | |
| dc.date.copyright | 2008-11-20 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-11-03 | |
| dc.identifier.citation | [1]J.-G. Yook, V. Chandramouli, L. P. B. Katehi, and K. A. Sakallah, “Computation of switching noise in printed circuitboards,” IEEE Trans. Comp., Packag.,Manufact. Technol. A,vol. 20, pp. 64–75, 1997.
[2]G.-T. Lei, R. W. Techentin, and B. K. Gilbert, “High-frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562–569, May 1999. [3]T. L.Wu, J. N. Huang, C. C. Kuo, and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned dc reference planes of high speed digital PCB,” IEEE Trans.Electromagn. Compat., vol. 46, pp. 33–45, Feb. 2004. [4]T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference(EMI) of system-on-package (SOP),” IEEE Trans. Antennas Propag, vol. 27, no. 2, pp. 304–314, May 2004. [5]T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microw. Compon. Lett., vol. 14, no. 7,pp. 337–339, Jul. 2004. [6]Orhanovic, N., Raghuram, R., Matsui, N., “Signal propagation and radiation of single and differential microstrip traces over split image planes,” 2000 International symposium on Electromagnetic compatibility,pp. 339-343, vol.1,2000. [7]J. N. Hwang and T. L. Wu, “The bridging effect of the isolation moat on the emi caused by ground bounce noise between power/ground planes of PCB,” in Proc. IEEE Int. Symp. Electromagn. Compat., 2001, pp. 471-474. [8]J. Choi, S. Chun, N. Na, M. Swaminathan, and L. Smith, “A methodology for the placement and optimization of decoupling capacitors for gigahertz systems,” in Proc. Int. Conf. VLSI Design, Jan. 2000, pp.156–161. [9]T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2935–2942, Sep.2005. [10]Y. H. Lin and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, vol. 1. 1, 2001, pp. 319-324. [11]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design. New York:Wiley,2000, pp.130-134. [12]Ansoft, High Frequency Structure Simulator, Version 11 (www.ansoft.com). [13]薛光華,“差模轉角與信號線跨槽不連續結構之模型化、分析與設計,”國立台灣大學電機工程學系博士論文, 2006. [14]TX-Line Transmission Line Calculator,Applied Wave Research, Inc.(www.awrcorp.com) [15]D. E. Bockelman and W. R. Eisenstadt, “Pure-mode network analyzer for on-wafer measurements of mixed-mode s-parameters of differential circuits,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1071–1077,July 1997. [16]D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common-mode scattering parameters: Theory and simulation,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1530–1539, July 1995. [17]W. Fan, A. Lu, L. L. Wai, and B. K. Lok, “Mixed-mode S-parameter characterization of differential structures,” in Proc. IEEE 5th Electronics Packaging Technology Conf., pp. 533-537, Dec. 2003. [18]ADS 2005A,Agilent Technologies (www.agilent.com) [19]C. R. Paul, Introduction to Electromagnetic Compatibility, 2ed ed., John Wiley & Sons,2006. [20]D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, New York, 2005. [21]T. E. Harrington, “Total-radiated-power-based OATS-equivalent emissions testing in reverberation chambers and GTEM cells,” IEEE Intl. Symp. Electromag. Compat., Washington, DC, pp. 23-28,2000. [22]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design. New York:Wiley,2000, pp.65-66. [23]黃志億,“封裝基板上差動對繞線設計之研究,” 國立中山大學電機工程學系碩士論文, July 2007. [24]T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave Wireless Components Lett., vol.13, pp. 21–23, Jan. 2003. [25]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design. New York:Wiley,2000, pp.234-245. [26]Cheng-Hung Shih, Guang-Hwa Shiue , Tzong-Lin Wu, and Ruey-Beei Wu, “The Effects on SI and EMI for Differential Coupled Microstrip Lines over LPC-EBG Power/Ground Planes,” Asia-Pacific Symposium on Electromagnetic Compatibility, Singapore, May 2008, pp.19-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41940 | - |
| dc.description.abstract | 在電源與接地面間加去耦合電容抑制接地彈跳雜訊為一般常見的作法,但往往侷限於電容本身接腳的電感性,使電容在GHz以上便失去抑制的效果,而電磁能隙結構是一種被提出用來抑制高頻接地彈跳雜訊新的方法。
電磁能隙結構主要是利用週期性結構所產生的禁止頻帶抑制雜訊,而週期性結構使的參考平面不在是一個完整平面,平面上因為槽線,產生信號完整性和電磁相容的問題。由於差模信號具備有低雜訊產生與抑制共模雜訊的能力,本論文中將利用差模信號佈局在LPC-EBG結構上,探討耦合係數的影響,及適當位置的差模信號佈局,達到抑制高頻接地彈跳雜訊,並降低因槽線所引發信號完整性和電磁相容的問題。 | zh_TW |
| dc.description.abstract | Adding decoupling capacitors between the power and ground planes is a typical way to suppress the ground bounce noise(GBN). However, they are not effective at the higher frequency than GHz due to their inherent lead inductance. In recent, a new method for eliminating the GBN at higher frequency is proposed by electromagnetic bandgap structure.
To make use of period structure main of EBG, it produces the stopband to suppress the noise. But the reference plane of period structure is not a solid plane, it produces problems on Signal Integrity (SI) and Electromagnetic Compatibility (EMC) because of the slot of the plane. The differential signals have ability on producing low noise and suppressing common noise. In this paper, we discuss the influence of differential coupling coefficient and appropriate layout to design differential signals. Accomplish the purpose of eliminating the GBN at higher frequency, and reduce the Signal Integrity and Electromagnetic Compatibility from the slot of LPC-EBG structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:38:26Z (GMT). No. of bitstreams: 1 ntu-97-P95942002-1.pdf: 2819303 bytes, checksum: d9e9699cba215665426738f95bc145b2 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 IX 第一章 簡介 1 1.1 研究背景與動機﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1 1.2 文獻回顧﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 1.3 論文大綱﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 第二章 差模傳輸線佈局在LPC-EBG結構之設計概念 5 2.1 LPC-EBG抑制接地雜訊﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 2.1.1 LPC-EBG應用簡介﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 2.1.2電磁能隙結構抑制雜訊的原理﹒﹒﹒﹒﹒﹒﹒﹒ 6 2.2 傳輸線跨槽線不連續之分析與探討﹒﹒﹒﹒﹒﹒﹒﹒﹒10 2.2.1單根傳輸線跨槽線的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 11 2.2.2差模傳輸線跨槽線的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 13 2.3 奇模與偶模傳輸原理﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 2.4 混合模態散射參數轉換﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒18 第三章 差模傳輸線跨電磁能隙結構槽線之信號完整性分析 21 3.1 差模傳輸線跨電磁能隙結構槽線電路架構﹒﹒﹒﹒﹒﹒23 3.2 混合模態散射參數特性分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24 3.2.1實驗設備及環境﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 24 3.2.2混合模態散射參數模擬與量測驗證析﹒﹒﹒﹒﹒ 26 3.3 特性阻抗特性分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒31 3.4 眼圖特性分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒35 3.4.1實驗設備及環境﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 35 3.4.1眼圖量測分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 36 第四章 差模傳輸線在電磁能隙結構之電磁輻射的效應 40 4.1 混合模態散射參數與電磁輻射的關連性探討﹒﹒﹒﹒﹒40 4.1.1利用混合模態散射參數分析電磁輻射﹒﹒﹒﹒﹒ 40 4.1.2混合模態散射參數與電磁輻射模擬比較﹒﹒﹒﹒ 42 4.2 電磁輻射驗證分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒50 4.2.1實驗設備及環境﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 50 4.2.2電磁輻射模擬與量測驗證分析﹒﹒﹒﹒﹒﹒﹒﹒ 55 第五章 差動傳輸線佈局在LPC-EBG結構設計建議 59 5.1 結構的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 59 5.2 耦合係數的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒61 5.3 參考平面的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒63 第六章 結論 68 參考文獻 69 圖目錄 圖1.1 CMOS邏輯閘輸出端電路的等效電路圖﹒﹒﹒﹒﹒﹒﹒﹒2 圖2.1 LPC-EBG電源平面示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 圖2.2 LPC-EBG結構圖(a)實際結構示意簡圖 (b)正方形基本單元的四個參數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 6 圖2.3 LPC-EBG實際製作圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 7 圖2.4 LPC-EBG與相同尺寸的裸板量測與2D-TL模擬結果﹒﹒﹒7 圖2.5 LPC-EBG等效模型﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 8 圖2.6 等效電容C與等效電感L並聯示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒8 圖2.7 多層電路板信號走線跨槽線示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒10 圖2.8 單根傳輸線跨槽線結構圖(a)立體圖 (b)平面圖﹒﹒﹒ 11 圖2.9 單根傳輸線跨越槽線之信號完整性分析(a)反射係數 (b)穿透係數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒12 圖2.10 差模傳輸線跨槽線結構圖(a)立體圖 (b)平面圖﹒﹒﹒ 14 圖2.11 微帶線電場場型(a)奇模態 (b)偶模態﹒﹒﹒﹒﹒﹒﹒ 15 圖2.12 微帶線磁場場型(a)奇模態 (b)偶模態﹒﹒﹒﹒﹒﹒﹒ 16 圖2.13 傳輸線對稱之等效電路(a)奇模態 (b)偶模態﹒﹒﹒﹒ 16 圖2.14 奇模阻抗與偶模阻抗﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒18 圖2.15 四埠網路系統﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒19 圖2.16 雙埠網路系統﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒19 圖3.1 (a)高頻電路板佈局圖 (b) LPC-EBG結構電源平面示意圖(c)高頻電路版結合LPC-EBG結構電源平面示意圖﹒﹒﹒﹒﹒﹒﹒ 22 圖3.2 差模傳輸線跨LPC-EBG不同位置設計結構(a)Case A (b)Case B (c)Case C (d)Case D﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 24 圖3.3 混合模態散射參數量測示意圖(a)量測儀器 (b)側視圖 25 圖3.4 差模信號插入損失Sd2d1 模擬結果﹒﹒﹒﹒﹒﹒﹒﹒﹒27 圖3.5 差模信號反射損失Sd1d1 模擬結果﹒﹒﹒﹒﹒﹒﹒﹒﹒27 圖3.6 Case B_down插入損失Sd2d1量測結果﹒﹒﹒﹒﹒﹒﹒﹒28 圖3.7 Case B_down反射損失Sd1d1量測結果﹒﹒﹒﹒﹒﹒﹒﹒28 圖3.8 Case D_down插入損失Sd2d1量測結果﹒﹒﹒﹒﹒﹒﹒﹒29 圖3.9 Case D_down反射損失Sd1d1量測結果﹒﹒﹒﹒﹒﹒﹒﹒29 圖3.10 Case B_down插入損失(Sd2d1 Sc2c1 )模擬結果﹒﹒﹒ 30 圖3.11 Case B_down反射損失Sc2c1 量測結果﹒﹒﹒﹒﹒﹒﹒ 30 圖3.12 (a)TDR模擬比較圖(b) TDT模擬比較圖﹒﹒﹒﹒﹒﹒﹒ 31 圖3.13 完整平面與LPC-EBG測試結構圖(a)Case B_down (b)Case D_down﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 32 圖3.14 Case B_down完整平面與LPC-EBG TDR模擬比較圖(a)TDR (b) TDT﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒33 圖3.15 Case D_down完整平面與LPC-EBG TDR模擬比較圖(a)TDR (b) TDT﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒34 圖3.16 眼圖量測儀器圖(a)高頻脈衝訊號產生器 (b)寬頻數位示波器﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 35 圖3.17 同軸線差模信號眼圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒36 圖3.18 Case B_down差模信號眼圖(a)完整平面 (b) LPC-EBG﹒37 圖3.19 Case D_down差模信號眼圖(a)完整平面 (b) LPC-EBG﹒38 圖4.1 差模輸入源,不同結構的EMI比較示意圖﹒﹒﹒﹒﹒﹒ 43 圖4.2 共模輸入源,不同結構的EMI比較示意圖﹒﹒﹒﹒﹒﹒ 43 圖4.3 差模輸入源,混合模態散射參數的比較示意圖(a)Case A_down (b)Case B_down (c)Case C_down(d)Case D_down﹒﹒﹒ 44 圖4.4 差模輸入源,Case A_down耦合係數強弱的EMI比較示意﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒47 圖4.5 共模輸入源,Case A_down耦合係數強弱的EMI比較示意圖 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒47 圖4.6 差模輸入源,Case D_down耦合係數強弱的EMI比較示意圖 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ ﹒48 圖4.7 共模輸入源,Case D_down耦合係數強弱的EMI比較示意圖 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ ﹒﹒48 圖4.8 差模輸入源,不同佈局結構的EMI比較示意圖(a)Case A _down/ Case B_down (b) Case A_down/ Case C_down(c) Case A_down/ Case D_down﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒49 圖4.9 開放空間測試場地(OATS) ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 51 圖4.10 3M量測距離之全電波暗室(anechoic chamber) ﹒﹒﹒ 51 圖4.11 橫電磁波傳輸室(TEM Cell) ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 52 圖4.12 GHz橫電磁波傳輸室(GTEM Cell)(a)外觀結構圖 (b)量測示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 52 圖4.13 待測物三維旋轉示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒53 圖4.14 GTEM電磁輻射測試系統示意圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒54 圖4.15 型終端接匹配﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 55 圖4.16 傳輸線實際截面切片圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒56 圖4.17 Case B_down遠場輻射量測圖(a)完整平面板 (b) LPC-EBG結構板﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 56 圖4.18 Case D_down遠場輻射量測圖(a)完整平面板 (b) LPC-EBG結構板﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 57 圖5.1 差模輸入源,不同佈局結構的電場輻射﹒﹒﹒﹒﹒﹒﹒60 圖5.2 共模輸入源,不同佈局結構的電場輻射﹒﹒﹒﹒﹒﹒﹒60 圖5.3 差模輸入源,不同耦合係數的電場輻射﹒﹒﹒﹒﹒﹒﹒62 圖5.4 共模輸入源,不同耦合係數的電場輻射﹒﹒﹒﹒﹒﹒﹒62 圖5.5 差模輸入源,不同參考平面的電場輻射(a)CaseA_down/ Case B_down (b)CaseA_down/Case C_down (c)CaseA_down/ CaseD_down﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒63 圖5.6 共模輸入源,不同參考平面的電場輻射(a)CaseA_down/ Case B_down (b)CaseA_down/Case C_down (c)CaseA_down/ CaseD_down﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒65 表目錄 表3.1 差模傳輸線設計之各項參數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒23 表3.2 Case B_down眼圖量測參數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 36 表3.3 Case D_down眼圖量測參數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 38 表4.1 混合模態散射量測參數﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電磁輻 | zh_TW |
| dc.subject | 射 | zh_TW |
| dc.subject | 低週期型共平面電磁能隙 | zh_TW |
| dc.subject | 信號品質 | zh_TW |
| dc.subject | EMI | en |
| dc.subject | low-period coplanar electromagnetic bandgap | en |
| dc.subject | LPC-EBG | en |
| dc.subject | signal integrity | en |
| dc.subject | SI | en |
| dc.subject | electromagnetic interference | en |
| dc.title | 差模傳輸線在LPC-EBG結構上SI和EMI的影響 | zh_TW |
| dc.title | The Effects on SI and EMI for Differential Coupled Microstrip Lines over LPC-EBG Power/Ground Planes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧信嘉(Hsin-Chia Lu),薛光華(Guang- Hwa Shiue) | |
| dc.subject.keyword | 低週期型共平面電磁能隙,信號品質,電磁輻,射, | zh_TW |
| dc.subject.keyword | low-period coplanar electromagnetic bandgap,LPC-EBG,signal integrity,SI,electromagnetic interference,EMI, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-11-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
