請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41907
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管傑雄 | |
dc.contributor.author | Yan-Ru Chen | en |
dc.contributor.author | 陳彥儒 | zh_TW |
dc.date.accessioned | 2021-06-15T00:36:51Z | - |
dc.date.available | 2013-12-24 | |
dc.date.copyright | 2008-12-24 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-12-04 | |
dc.identifier.citation | [1] A. O. Orlov, I. Amlani, G. H. Berstein, C. S. Lent, and G. L. Snider, “Realization of a Functional Cell for Quantum-Dot Cellular Automata,” Science 277, 928 (1997).
[2] K. I. Han, Y. M. Park, S. Kim, S. H. Choi, K. J. Kim, I. H. Park, and B.G. Park, “Enhancement of Memory Performance Using Doubly Stacked Si-Nanocrystal Floating Gates Prepared by Ion Beam Sputtering in UHV,” IEEE Trans. Electron Devices. 54, 359 (2007). [3] A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4μm) InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79, 421 (2001). [4] O. G. Schmidt and K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. Electron Devices 48, 1175 (2001). [5] B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A High Efficient 820 nm MOS Ge Quantum Dot Photodetector,” IEEE Electron Device Lett. 24, 318 (2003). [6] I. Berbezier and A. Ronda, “Self-assembling of Ge dots on nanopatterns: Experimental investigation of their formation, evolution and control,” Phys. Rev. B 75, 195407 (2007). [7] Y. H. Peng, C. -H. Hsu, C. H. Kuan, C. W. Liu, P. S. Chen, M.-J. Tsai, and Y. W. Suen, “The evolution of electroluminescence in Ge quantum-dot diodes with the fold number,” Appl. Phys. Lett. 85, 6107 (2004). [8] X. L. Li, G. Ouyang, and G. W. Yang, “Thermodynamic theory of nucleation and shape transition of strained quantum dots,” Phys. Rev. B 75, 245428 (2007). [9] R. E. Rudd, G. A. D. Briggs, A. P. Sutton, G. Medeiros-Ribeiro, and R. S. Williams, “Equilibrium Model of Bimodal Distributions of Epitaxial Island Growth,” Phys. Rev. Lett. 90, 146101 (2003). [10] X. Q. Li, H. Nakayama, and Y. Arakawa, “Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons,” Phys. Rev. B 59, 5069 (1999). [11] I. Berbezier, A. Ronda, A. Portavoce, and N. Motta, “Ge dots self-assembling: Surfactant mediated growth of Ge on SiGe (118) stress-induced kinetic instabilities,” Appl. Phys. Lett. 83, 4833 (2003). [12] K. Sakamoto, H. Matsuhata, “Alignment of Ge three-dimensional islands on faceted Si(001) surfaces,” M. O. Tanner, D. Wang, and K. L. Wang, Thin Solid Films 321, 55 (1998). [13] G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B. -Y. Nguyen, “Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates,” Appl. Phys. Lett. 75, 2752 (1999). [14] Z. Zhong, A. Halilovic, M. Mühlberger, F. Schäffler, and G. Bauer, “Positioning of self-assembled Ge islands on stripe-patterned Si(001) substrates,” J. Appl. Phys. 93, 6258 (2003). [15] Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84, 1922 (2004). [16] G. S. Kar, S. Kiravittaya, M. Stoffel, and O. G. Schmidt, “Material Distribution across the Interface of Random and Ordered Island Arrays,” Phys. Rev. Lett. 93, 246103 (2004). [17] A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha, and R. Hull, “Ge dot organization on Si substrates patterned by focused ion beam,” Appl. Phys. Lett. 85, 6401 (2004). [18] S. Watanabe, E. Pelucchi, B. Dwir, M. H. Baier, K. Leifer, and E. Kapon, “Dense uniform arrays of site-controlled quantum dots grown in inverted pyramids,” Appl. Phys. Lett. 84, 2907 (2004). [19] B. Yang, F. Liu, and M. G. Lagally, “Local Strain-Mediated Chemical Potential Control of Quantum Dot Self-Organization in Heteroepitaxy,” Phys. Rev. Lett. 92, 025502 (2004). [20] G. Chen, G. Vastola, H. Lichtenberger, D. Pachinger, G. Bauer, W. Jantsch, F. Schäffler, and L. Miglio, “Ordering of Ge islands on hill-patterned Si (001) templates,” Appl. Phys. Lett. 92, 113106 (2008). [21] R. V. Kukta and D. Kouris, “On the mechanisms of epitaxial island alignment on patterned substrates,” J. Appl. Phys. 97, 033527 (2005). [22] Elionix homepage: http://www.elionix.co.jp [23] F. Liu, M. Huang, P. P. Rugheimer, D. E. Savage, and M. G. Lagally, “Nanostressors and the Nanomechanical Response of a Thin Silicon Film on an Insulator,” Phys. Rev. Lett. 89, 136101 (2002). [24] Y.-R. Chen, C.-H. Kuan, Y.-W. Suen, Y.-H. Peng, P.-S. Chen, C.-H. Chao, E.-Z Liang, C.-F. Lin, and H.-C. Lo, “High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array,” Appl. Phys. Lett. 93, 083101 (2008). [25] It is assumed that a Ge QD with r = 100 nm in diameter, h = 20 nm in height, and hut shape on silicon ridge (κ > 0). Surface curvature, κ, is maintained as constant while Ge QD is grown on silicon ridge. Consider the chemical potential, μ, is: strain energy + surface energy = The z0 for the minimum energy of a Ge QD growing on the silicon ridge is obtained from , and z0 is approximately 5 nm. In our simulation, z0 is taken as about 1 nm. [26] Y.-R. Chen, Y. H. Peng, C. H. Kuan and P. S. Chen, “Fabrication of Well-aligned and Mono-modal Dots on the Silicon Substrate with Trench-ridge Nano-structures,” 2005 NSTI Nanotechnology Conference and Trade Show, Anaheim, Los Angeles, California, USA, May 2005. [27] Y.-R. Chen , J. L. Li , Y. H. Peng , P. S. Chen and C. H. Kuan, “Well-aligned, Highly-dense, and Mono-modal Germanium Quantum Dots on the Silicon Substrate with Trench-ridge Nano-structures,” 2006 International Electron Devices and Materials Symposia, National Cheng Kung University Tainan, Taiwan, R.O.C., Dec. 2006. [28] S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhancement subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521-1523 (2003). [29] D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005). [30] H. Lochbihler and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32, 3459-3465 (1993). [31] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275-1297 (1965). [32] F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one–dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412(1)-155412(10) (2002). [33] P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48-51 (2000). [34] S. H. Zaidi, M. Yousaf, and S. R. J. Brueck, “Grating coupling to surface plasma waves. II. Interactions between first- and second-order coupling,” J. Opt. Soc. Am. B 8, 1348-1359 (1991). [35] H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795-4802 (1994). [36] D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [37] R. A. Depine, “Improvement of a differential method for metallic diffraction gratings by means of an integral method,” J. Mod. Opt. 34, 1135-1139 (1987). [38] M. G. Moharam, E. B. Grann, and D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A. 12, 1068-1076 (1995). [39] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981). [40] N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321-1331 (1994). [41] W. Lee, and F. L. Degertekin, “Rigorous coupled-wave analysis of multilayered grating structures,” J. Lightwave Technol. 22, 2359-2363 (2004). [42] K.-Y. Fong and P. M. Hui, “Controlling enhanced transmission through metallic gratings with subwavelength slits by anisotropic waveguide resonance,” Appl. Phys. Lett. 91, 171101 (2007). [43] T. A. Nieminen, and D. K. Gramotnev, “Rigorous analysis of extremely asymmetrical scattering of electromagnetic waves in slanted periodic gratings,” Opt. Commun. 189, 175-186 (2001). [44] T. Fujisawa, and M. Koshiba, “Analysis of photonic crystal waveguide gratings with coupled-mode theory and a finite-element method,” Appl. Opt. 45, 4114-4121 (2006). [45] T. Delort, and D. Maystre, “Finite-element method for gratings,” J. Opt. Soc. Am. A 10, 2592-2601 (1993). [46] G. Bao, Z. Chen, and H. Wu “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106-1114 (2005). [47] Y.-R. Chen and C. H. Kuan, “Experiments and Simulations of Infrared Transmission by Transverse Electric Mode through Au Gratings on Silicon with various Au widths,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference (AOE), Shanghai, China, Oct. 2007. [48] Y.-R. Chen and C. H. Kuan, “Experiments and Simulations of Infrared Transmission by Transverse Electric Mode through Au Gratings on Silicon with various Au widths,” Optics and Photonics Taiwan (OPT), Taichung, Taiwan, Dec. 2007. [49] Y.-R. Chen and C. H. Kuan, “Experiments and Simulations of Infrared Transmission by Transverse Magnetic Mode through Au Gratings on Silicon with Various Air-slot Widths over the Period,” Material Research Society, San Fransisco, California, USA, Mar. 2008. [50] Y.-R. Chen and C. H. Kuan, “Experiments and Simulations of Infrared Transmission by Transverse Magnetic Mode through Au Gratings on Silicon with Various Air-slot Widths over the Period,” 2008 NSTI Nanotechnology Conference and Trade Show, Boston, Massachusetts, USA, June 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41907 | - |
dc.description.abstract | 電子束微影系統被用來製作奈米尺度的結構和元件,其應用範圍很廣。本篇論文提出兩個應用電子束微影系統製作一維結構所進行的研究:
第一部分的內容是利用矽奈米結構控制鍺量子點的成長位置和大小。這裡提出操控「表面地形曲率」的概念來控制鍺量子點的成長位置和形狀。運用此一觀念,成功地在矽奈米脊部成長高密度一維規則排列的鍺量子點,其密度可以到達每平方公分有5.4×109 個鍺量子點。除此之外,我們利用化學位能來模擬鍺量子點的位置,發現化學位能可以利用表面地形曲率加以操控,進而控制鍺量子點的成長位置。由量子點的大小統計資料,觀察到矽奈米脊部會對成長在其上的鍺量子點的型態和直徑造成影響。此項研究可以提供電子或光電元件上面的應用。 第二部份的內容是探討在紅外線波段中,以橫向電波模正向入射金屬光柵之穿透行為。在這篇論文中,先由紅外線穿透實驗結果為依據,推導出「傅立葉級數展開法」,配合馬克斯威爾方程式和邊界積分法,模擬出橫向電波模正向入射金屬光柵之穿透行為。其方法是將在光柵附近和光柵內電場形式以適當的傅立葉級數展開,可以預測出紅外線的穿透行為。模擬的結果中,光柵內奈米尺度的邊界條件可以被忽略(厚度約20奈米),由模擬的結果得知,忽略奈米邊界條件或是加一項邊界條件符合實驗上量測的結果,而如果增加至五十項邊界條件則和實驗不符。此現象說明由於在微米的尺度下,奈米尺度的邊界條件可以忽略或只考慮一項邊界條件。此項研究有助於紅外光偵測器和生物晶片上的應用。 | zh_TW |
dc.description.abstract | E-beam lithography system has been extensively exploited in fabricating nano structures and corresponding researches. Two research topics about one-dimensional structures fabricated by e-beam are included in this thesis.
The first topic is controls of the germanium quantum dots locations and size by silicon nano ridge arrays. The idea “curvature engineering” is proposed to control germanium quantum dots locations. Based on this idea, high-density one-dimensional well-aligned germanium quantum dots have been experimentally achieved with areal density of 5.4×109 cm-2. Simulations of the chemical potential show that a proper distribution of the surface curvature may give rise to a suitable chemical potential minimum helping positioning the quantum dots. The same method can also be used to control the growth mode and the uniformity of quantum dots on nano ridges. Our results can be applied to form the active quantum dots in nano crystal nonvolatile memories and high-sensitivity quantum-dot infrared detectors. The second topic is the study of infrared transmission through metal gratings. The transverse electric mode normal incident infrared transmission behaviors through Au/silicon gratings with nano scale depth are investigated experimentally. The results are used as reference for building Fourier series expansion method. By matching the Maxwell’s boundary conditions and exploiting integral method, the transmission behaviors can be well predicted. The boundary conditions at the interface of Au/silicon inside the gratings with a depth of 20 nm can be neglected compared with the 4 μm period. Moreover, exact nano boundary conditions (50 modes) are not appropriate for metal gratings with a nano depth and micro period. We think that the differences of dimension in depth and width of grating structures lead to the inappropriateness nano scale boundary conditions. It offers an alternative to deal with the nano scale boundary conditions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:36:51Z (GMT). No. of bitstreams: 1 ntu-97-D93943029-1.pdf: 1656392 bytes, checksum: 7e94adaafcc605d83746d0a091c63d2b (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Germanium Quantum Dots Growth on Silicon Nano Ridges 6 2.1 Introduction 6 2.2 Perspective 8 2.3 Sample Fabrication 9 2.4 Model 13 2.5 Discussion 15 2.5.1 Simulation Result 15 2.5.2 Period and Ridge Width Effect 16 2.5.3 Size Effect 22 2.6 Summary 26 Chapter 3 Transverse Electric Mode Normal Incident Infrared Transmission Behaviors through Metal Gratings 27 3.1 Introduction 27 3.2 Experiment 29 3.3 Algorithm of FSEM 33 3.4 FSEM and experiment results 40 3.4.1 Experiment and FSEM Simulation Results 40 3.4.2 Energy conservation 42 3.4.3 Magnetic fields at the surface of metal 43 3.4.4 Nano boundary conditions 45 3.5 Summary 50 Chapter 4 Conclusion 51 Reference 53 | |
dc.language.iso | en | |
dc.title | 一維結構應用在鍺量子點成長和紅外線穿透之研究 | zh_TW |
dc.title | One-dimensional Structure Applications on Study of Germanium Quantum Dots Growth
and Infrared Transmission | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孫建文,彭隆瀚,孫允武,陳邦旭,賴聰賢,蘇炎坤,黃建璋 | |
dc.subject.keyword | 電子束微影系統,鍺量子點,紅外線,金屬光柵,傅立葉級數, | zh_TW |
dc.subject.keyword | e-beam,germanium quantum dot,infrared,gratings,Fourier series, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-12-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。