請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41882
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張正憲(Jeng-Shian Chang) | |
dc.contributor.author | Po-Jen Liao | en |
dc.contributor.author | 廖柏任 | zh_TW |
dc.date.accessioned | 2021-06-15T00:35:43Z | - |
dc.date.available | 2012-01-06 | |
dc.date.copyright | 2009-01-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-12-26 | |
dc.identifier.citation | [1] http://www.moi.gov.tw/stat/
[2] A. F. Collings, and F. Caruso, “Biosensors: recent advances,” Reports on Progress in Physics, 60, 1397-1445, 1997. [3] F. Scheller, and F. Schubert, Biosensors, Elsevier Science Publishing Inc., New York, USA, 1992. [4] 微機電系統技術與應用, 行政院國家科學委員會精密機械發展中心, 2003. [5] G. Z. Sauerbrey, “Verwendung von Schwingquarzen zur Wagung dunner Schichten undzur Mikrowagung,” Z. Phys., 155, 206-222, 1959. [6] W. H. King, “Piezoelectric Sorption Detector,” Analytical Chemistry, 36, 1735-1739, 1964. [7] P. L. Konash, and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography,” Analytical Chemistry, 52, 1929-1931, 1980. [8] C. E. Reed, K. K. Kanazawa, and J. H. Kaufman, “Physical Description of a Viscoelastically Loaded AT-Cut Quartz Resonator,” Applied Physics, 68, 1993-2001, 1990. [9] K. K. Kanazawa, and J. G. Gordon, “Frequency of a Quartz Microbalance in Contact with Liquid,” Analytical Chemistry, 57, 1770-1771, 1985. [10] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry,” Analytical Chemistry, 58, 1206-1209, 1986. [11] S. J. Martin, V. E. Granstaff, and G. C. Frye, “Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading,” Analytical Chemistry, 63, 2272-2281, 1991. [12] M. Muratsugu, F. Ohta, Y. Miya, T. Hosokawa, S. Kurosawa, N. Kamo, and H. Ikeda, “Quartz-Crystal Microbalance for the Detection of Microgram Quantities of Human Serum-Albumin - Relationship between the Frequency Change and the Mass of Protein Adsorbed,” Analytical Chemistry, 65, 2933-2937, 1993. [13] L. Konermann, “Monitoring Reaction Kinetics in Solution by Continuous-Flow Methods: The Effects of Convection and Molecular Diffusion under Laminar Flow Conditions,” Physical Chemistry A, 103, 7210-7216, 1999. [14] W. N. Gill, “Exact Analysis of Unsteady Convective Diffusion,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 316, 1526, 341-350, 1970. [15] W. N. Gill, “A Note on the Solution of Transient Dispersion Problems,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 298, 1454, 335-339, 1967. [16] M. C. Potter, and D. C. Wiggert, Mechanics of Fluids, Brooks/cole, Second edition, 1997. [17] R. W. Glaser, “Antigen-Antibody Binding and Mass Transport by Convection and Diffusion to a Surface: A Two-Dimensional Computer Model of Binding and Dissociation Kinetics,” Analytical Biochemistry, 213, 152-161, 1993. [18] L. L. H. Christensen, “Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation,” Analytical Biochemistry, 249, 153-164, 1997. [19] T. A. Morton, D. G. Myszka, and I. M. Chaiken, “Interpreting Complex Binding-Kinetics from Optical Biosensors : A Comparison of Analysis by Linearization, the Integrated Rate-Equation, and Numerical-Integration,” Analytical Biochemistry, 227, 176-185, 1995. [20] Jian Qi, and R. F. Savinell, “Mass-Transfer in a Laminar-Flow Parallel Plate Electrolytic Cell With Simutaneous Development of Velocity and Concentration Boundary-Layers,” Applied Electrochemistry, 20 ,885 ,1990. [21] J. Davies, Surface Analytical Techniques for Probing Biomaterial Processes, CRC Press, 1996. [22] R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” Immunological Methods, 145, 229-240, 1991. [23] http://www.nbm.ntu.edu.tw/ [24] S. F. D’ Souza, “Immobilized enzymes in bioprocess,” Nuclear Agriculture and Biotechnology Division. [25] R. H.Garrett, and C. M. Grisham, Biochemistry, Saunders College Publishing, Orlando, USA, 1995. [26] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, “Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers,” American Chemical Society, 115, 9389-9401, 1993. [27] H. O. Finklea, S. Avery, and M. Lynch, “Blocking oriented monolayers of Alkyl mercaptans on gold electrodes,” Langmuir, 3, 409-413, 1987. [28] G. E. Poirier, and E. D. Pylant, “The Self-Assembly Mechanism of Alkanethiols on Au(111),” Science, 272, 1145-1148, 1996. [29] http://www.xs4all.nl/~ednieuw/IgGsubclasses/subkl23.htm. [30] J. Kuby, Immunology, W. H. Freeman and Company, New York, USA, 1992. [31] E. W. Silverton, M. A. Navia, and D. R. Davies, “Three dimensional structure of an intact human immunoglobulin,” Proceedings of the National Academy of Sciences of the United States of America, 74, 5140-5144, 1977. [32] D. Freifelderm原著, 張信編譯, 分子生物學, 國立編譯館, 台灣. [33] B. R. Munson, D. F. Young, and T. H. Okiishi, A Brief Introduction to Fluid Mechanics, John Wiley & Sons, 2/e, 2002. [34] H. A. Leddy, and F. Guilak, “Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching,” Annals of biomedical engineering, 31, 753-760, 2003. [35] 楊智凱, 電熱力的流場攪拌效應對生物感測器吸附受體效益之數值研究, 碩士論文, 國立台灣大學應用力學所, 2007. [36] 王裕銘, 利用原子力顯微術直接檢測單一生物分子間之鍵結力、解離速率及熱力學之研究, 博士論文, 國立台灣大學應用力學所, 2006. [37] M. Clark, “Antigen-antibody reactions,” Department of Pathology, University of Cambridge, 2008. http://www.path.cam.ac.uk/~mrc7/lecturenotes//abaffinity.pdf. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41882 | - |
dc.description.abstract | 由於石英晶體微天平生物感測器的無須標定、無須破壞生物分子、高靈敏度和能夠即時檢測等優異特性,在近幾年來廣泛的應用於生物分子間反應行為的即時檢測上。關於石英晶體微天平在檢測生物分子行為的相關研究大多以實驗為主,利用數值模擬討論鍵結反應的相關研究卻略顯不足。本論文利用有限元素進行討論,並與實驗結果加以比對與驗證,相互映證彼此的正確性。
本研究利用石英晶體微天平進行人體免疫球蛋白(Human IgG1)和其相對應的抗原(Anti-Human IgG1)之親和解離行為的即時檢測及分析。再利用有限元素模擬其鍵結反應行為,並和實驗結果相互驗證。研究中發現溶液輸送流道中穩態層流的流場會影響流道內濃度的分布。當流道長度固定,待測物供應量越少,輸送流道出口處的濃度分佈會有明顯的衰減。研究中又發現由於質量傳輸限制導致親和力分析中未能滿足 的假設。上述的兩大原因都會使得在親和力分析中產生計算上的誤差,造成實驗與模擬結果會有明顯的差異。因此我們建立一套新的修正結合速率常數 和解離速率常數 計算方法,並利用修正過 、 與完整的模型進行反應曲線的模擬,其結果即獲得相當大的改善。模擬的反應曲線與實驗之反應曲線會有較佳的相似度,證明了修正的計算方法與模擬模型的正確性。最後利用此驗證過的模擬模型,對各項變數與生物鍵結反應之間的影響進行討論。 | zh_TW |
dc.description.abstract | Quartz Crystal Microbalance (QCM) biosensor has several advantages in analyzing the interaction among biomolecules, such as label free, non-destructive, highly sensitive and capable of monitoring dynamic biomolecular interaction in real time. It has been widely used as the apparatus for the biomolecule detection in the last two decades. Most of the existing works are focused merely on experiments of using QCM. In this thesis, we perform not only on experiments but also the numerical simulation based on the FEM software, COMSOL Multiphysics, to study the behavior of the antibody-antigen interaction.
In these immunoassay experiments, we use the biosensor (Quartz Crystal Microbalance, QCM) to detect the specific binding reaction of the Human IgG1-Anti-Human IgG1 protein pair in physiological environments. In addition to experiments, we use the finite element analysis software, COMSOL Multiphysics, to simulate the behavior of Human IgG1 and Anti-Human IgG1 interactions. During the simulation process, we discuss the unsteady convective diffusion in fully developed laminar flow in the transport tube. The transport tube is used for transporting the analyte solution into the microchannel. The analyte concentration in the tube is strongly affected by the flow field. With the supplement of the analyte solution decreasing, the analyte concentration will be apparently decayed when length of the tube is fixed. Furthermore, the assumption of [A]surface = [A]bulk in the basic kinetic analysis is not correct because of the effect by mass transport in the liquid phase. These above-mentioned reasons cause that the apparent association rate constant and the apparent dissociation rate constant obtained by the basic kinetic analysis are not the real constants of the specific binding reaction. The apparent and the apparent cause that results obtained from the simulation and the experiment do not match. Therefore, we create a modified method to improve the basic kinetic analysis. We can obtain the calibrated and in terms of this modified method. Using the calibrated and to simulate interaction curves, we can obtain more consistent simulation results with experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:35:43Z (GMT). No. of bitstreams: 1 ntu-97-R95543049-1.pdf: 4799515 bytes, checksum: 68e2142697b64a1d8a4ede140f537865 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 謝誌 iv 目錄 vi 圖目錄 x 表目錄 xv 符號目錄 xvi 第一章 導論 1 1.1 前言 1 1.2 生物感測器 2 1.2.1 生物感測器之原理 2 1.2.2 生物感測器之分類 2 1.2.3 壓電感測器 4 1.3 文獻回顧 5 1.4 研究動機 8 1.5 論文架構 9 第二章 基本理論 10 2.1 壓電效應 10 2.2 壓電理論 11 2.3 石英晶體特性 14 2.4 石英晶體理論 17 2.4.1 無負載於石英晶體 17 2.4.2 理想負載於石英晶體 21 2.4.3 液態負載於石英晶體 24 2.4.4 解決液態負載造成干擾之方法 24 2.5 溶液輸送流道中非穩態傳導擴散理論 26 2.5.1 流道中非穩態傳導擴散理論 27 2.5.2 理論及模型驗證 28 2.6 有限元素模擬 31 2.6.1 流場統御方程式 31 2.6.2 濃度場統御方程式 32 2.6.3 反應面統御方程式 32 2.7 生物分子親合及解離反應 33 2.7.1 結合及解離反應 33 2.7.2 質量傳輸效應 34 2.7.3 親和力分析 35 第三章 實驗材料與方法 39 3.1 生物晶片表面修飾 39 3.1.1 常見之修飾方法 39 3.1.2 實驗之修飾方法 41 3.2 實驗樣品 42 3.2.1 人體免疫球蛋白 42 3.2.2 免疫球蛋白之結構 44 3.3 石英晶體微天平 46 3.4 實驗設備 49 3.5 實驗藥品 50 3.6 前置工作及藥品配置 51 3.6.1 清洗管路 51 3.6.2 藥品配置 52 3.6.3 緩衝液配製 52 3.7 實驗步驟 53 3.7.1 穩定度測試實驗 53 3.7.2 人體免疫球蛋白抗體及抗原鍵結實驗 53 3.8 實驗結果 54 3.8.1 穩定度測試實驗 54 3.8.2 人體免疫球蛋白抗體及抗原鍵結實驗 56 3.8.3 實驗結果之親和力分析 62 第四章 有限元素模擬與結果比對 72 4.1 有限元素模型建立 72 4.2 溶液輸送流道模型 73 4.2.1 輸送流道之流場模擬 73 4.2.2 輸送流道之濃度場模擬 78 4.3 反應槽模型 82 4.3.1 反應槽流場模擬 83 4.3.2 反應槽濃度場模擬 84 4.3.3 結合反應曲線 85 4.4 修正親和力分析 87 4.4.1 修正親和力之計算 88 4.4.2 反算結果與實驗比對 90 4.5 討論不同變數對結合反應曲線的影響 98 4.5.1 供應量對結合反應曲線影響 98 4.5.2 流速對結合反應曲線影響 101 4.6 討論結合反應曲線之趨勢 106 第五章 結論與未來展望 112 5.1 結論 112 5.2 未來展望 113 參考文獻 115 | |
dc.language.iso | zh-TW | |
dc.title | 石英晶體微天平應用於人體免疫球蛋白檢測之實驗及模擬 | zh_TW |
dc.title | On the Immunoassay of Human Immunoglobulin using Quartz Crystal Microbalance: Experiment and Numerical Simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳光鐘(Kuang-Chong Wu),林世明(Shi-ming Lin),翁宗賢(Tzong-Shyan Wung),趙聖德(Sheng Der Chao) | |
dc.subject.keyword | 生醫感測器,石英晶體微天平,有限元素分析,結合解離常數,人體, | zh_TW |
dc.subject.keyword | Biosensor,Quartz Crystal Microbalance,FEM,Basic kinetic analysis,Human IgG1, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-12-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。