Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorTsai-Chun Laien
dc.contributor.author賴財春zh_TW
dc.date.accessioned2021-06-15T00:35:24Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation1999 A unified nomenclature system for the nuclear receptor superfamily. Cell 97: 161-163.
ABERLE, H., A. BAUER, J. STAPPERT, A. KISPERT and R. KEMLER, 1997 [beta]-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16: 3797-3804.
AMAZIT, L., A. ROSEAU, J. A. KHAN, A. CHAUCHEREAU, R. K. TYAGI et al., 2011 Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Molecular Endocrinology 25: 394-408.
ANNICOTTE, J.-S., E. FAYARD, G. H. SWIFT, L. SELANDER, H. EDLUND et al., 2003 Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Molecular and Cellular Biology 23: 6713-6724.
BABOSHINA, O. V., and A. L. HAAS, 1996 Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. Journal of Biological Chemistry 271: 2823-2831.
BALDI, L., K. BROWN, G. FRANZOSO and U. SIEBENLIST, 1996 Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of IB. Journal of Biological Chemistry 271: 376-379.
BATONNET, S., M. P. LEIBOVITCH, L. TINTIGNAC and S. A. LEIBOVITCH, 2004 Critical Role for Lysine 133 in the Nuclear Ubiquitin-mediated Degradation of MyoD. Journal of Biological Chemistry 279: 5413-5420.
BERGINK, S., and S. JENTSCH, 2009 Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458: 461-467.
CHALKIADAKI, A., and I. TALIANIDIS, 2005 SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Molecular and Cellular Biology 25: 5095-5105.
CHAN, W. M., M. C. MAK, T. K. FUNG, A. LAU, W. Y. SIU et al., 2006 Ubiquitination of p53 at Multiple Sites in the DNA-Binding Domain. Molecular Cancer Research 4: 15-25.
CHAU, V., J. TOBIAS, A. BACHMAIR, D. MARRIOTT, D. ECKER et al., 1989 A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576-1583.
CHAUCHEREAU, A., L. AMAZIT, M. QUESNE, A. GUIOCHON-MANTEL and E. MILGROM, 2003 Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. Journal of Biological Chemistry 278: 12335-12343.
CHEN, A., F. E. KLEIMAN, J. L. MANLEY, T. OUCHI and Z.-Q. PAN, 2002 Autoubiquitination of the BRCA1•BARD1 RING ubiquitin ligase. Journal of Biological Chemistry 277: 22085-22092.
CHEN, Z. J., 2005 Ubiquitin signalling in the NF-[kappa]B pathway. Nature Cell Biology 7: 758-765.
CIECHANOVER, A., A. ORIAN and A. L. SCHWARTZ, 2000 Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22: 442-451.
CLYNE, C. D., C. J. SPEED, J. ZHOU and E. R. SIMPSON, 2002 Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. Journal of Biological Chemistry 277: 20591-20597.
DEL CASTILLO-OLIVARES, A., J. A. CAMPOS, W. M. PANDAK and G. GIL, 2004 The role of α1-fetoprotein transcription factor/LRH-1 in bile acid biosynthesis. Journal of Biological Chemistry 279: 16813-16821.
DESCLOZEAUX, M., I. N. KRYLOVA, F. HORN, R. J. FLETTERICK and H. A. INGRAHAM, 2002 Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Molecular and Cellular Biology 22: 7193-7203.
DIKIC, I., S. WAKATSUKI and K. J. WALTERS, 2009 Ubiquitin-binding domains — from structures to functions. Nature Reviews Molecular Cell Biology 10: 659-671.
EA, C.-K., L. DENG, Z.-P. XIA, G. PINEDA and Z. J. CHEN, 2006 Activation of IKK by TNF± requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molecular Cell 22: 245-257.
FARHANA, L., M. DAWSON, A. K. RISHI, Y. ZHANG, E. VAN BUREN et al., 2002 Cyclin B and E2F-1 expression in prostate carcinoma cells treated with the novel retinoid CD437 are regulated by the ubiquitin-mediated pathway. Cancer Research 62: 3842-3849.
FRANCIS, G. A., E. FAYARD, F. PICARD and J. AUWERX, 2003 Nuclear receptors and the control of metabolism. Annual Review of Physiology 65: 261-311.
GOODWIN, B., S. A. JONES, R. R. PRICE, M. A. WATSON, D. D. MCKEE et al., 2000 A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Molecular Cell 6: 517-526.
GU, P., B. GOODWIN, A. C.-K. CHUNG, X. XU, D. A. WHEELER et al., 2005 Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Molecular and Cellular Biology 25: 3492-3505.
HENG, J.-C. D., B. FENG, J. HAN, J. JIANG, P. KRAUS et al., 2010 The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6: 167-174.
HERSHKO, A., and A. CIECHANOVER, 1982 Mechanisms of intracellular protein breakdown. Annual Review of Biochemistry 51: 335-364.
HERSHKO, A., and A. CIECHANOVER, 1998 The ubiquitin system. Annual Review of Biochemistry 67: 425-479.
HICKE, L., 2001 Protein regulation by monoubiquitin. Nature Reviews Molecular Cell Biology 2: 195-201.
HOCHSTRASSER, M., 1995 Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology 7: 215-223.
HOCHSTRASSER, M., M. J. ELLISON, V. CHAU and A. VARSHAVSKY, 1991 The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo. Proceedings of the National Academy of Sciences 88: 4606-4610.
JOHNSON, E. S., P. C. M. MA, I. M. OTA and A. VARSHAVSKY, 1995 A proteolytic pathway that recognizes ubiquitin as a degradation signal. Journal of Biological Chemistry 270: 17442-17456.
KAISER, P., K. FLICK, C. WITTENBERG and S. I. REED, 2000 Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCFMet30-mediated inactivation of the transcription factor Met4. Cell 102: 303-314.
KALLIO, P. J., W. J. WILSON, S. O’BRIEN, Y. MAKINO and L. POELLINGER, 1999 Regulation of the Hypoxia-inducible Transcription Factor 1α by the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry 274: 6519-6525.
KOEPP, D. M., J. W. HARPER and S. J. ELLEDGE, 1999 How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97: 431-434.
KORNITZER, D., and A. CIECHANOVER, 2000 Modes of regulation of ubiquitin-mediated protein degradation. Journal of Cellular Physiology 182: 1-11.
LEE, M. B., L. A. LEBEDEVA, M. SUZAWA, S. A. WADEKAR, M. DESCLOZEAUX et al., 2005 The DEAD-Box protein DP103 (Ddx20 or Gemin-3) represses oorphan nuclear receptor activity via SUMO modification. Molecular and Cellular Biology 25: 1879-1890.
LEE, Y.-K., Y.-H. CHOI, S. CHUA, Y. J. PARK and D. D. MOORE, 2006 Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. Journal of Biological Chemistry 281: 7850-7855.
LIN, H.-K., S. ALTUWAIJRI, W.-J. LIN, P.-Y. KAN, L. L. COLLINS et al., 2002 Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. Journal of Biological Chemistry 277: 36570-36576.
LIU, D. L., W. Z. LIU, Q. L. LI, H. M. WANG, D. QIAN et al., 2003 Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biology of Reproduction 69: 508-517.
LONARD, D. M., Z. NAWAZ, C. L. SMITH and B. W. O'MALLEY, 2000 The 26S proteasome is required for estrogen receptor-[alpha] and coactivator turnover and for efficient estrogen receptor-[alpha] transactivation. Molecular Cell 5: 939-948.
LUO, Y., C.-P. LIANG and A. R. TALL, 2001 The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. Journal of Biological Chemistry 276: 24767-24773.
MURATANI, M., and W. P. TANSEY, 2003 How the ubiquitin-proteasome system controls transcription. Nature Reviews Molecular Cell Biology 4: 192-201.
NAKAMURA, S., J. A. ROTH and T. MUKHOPADHYAY, 2000 Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Molecular and Cellular Biology 20: 9391-9398.
NAWAZ, Z., D. M. LONARD, A. P. DENNIS, C. L. SMITH and B. W. O’MALLEY, 1999 Proteasome-dependent degradation of the human estrogen receptor. Proceedings of the National Academy of Sciences 96: 1858-1862.
NITTA, M., S. KU, C. BROWN, A. Y. OKAMOTO and B. SHAN, 1999 CPF: An orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7α-hydroxylase gene. Proceedings of the National Academy of Sciences of the United States of America 96: 6660-6665.
PALOMBELLA, V. J., O. J. RANDO, A. L. GOLDBERG and T. MANIATIS, 1994 The ubiquitinproteasome pathway is required for processing the NF-[kappa]B1 precursor protein and the activation of NF-[kappa]B. Cell 78: 773-785.
PARÉ, J.-F., D. MALENFANT, C. COURTEMANCHE, M. JACOB-WAGNER, S. ROY et al., 2004 The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. Journal of Biological Chemistry 279: 21206-21216.
PASSMORE, L. A., and D. BARFORD, 2004 Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochemical Journal 379: 513-525.
PICKART, C., 1997 Targeting of substrates to the 26S proteasome. The FASEB Journal 11: 1055-1066.
PICKART, C. M., and M. J. EDDINS, 2004 Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1695: 55-72.
POLAKIS, P., 2000 Wnt signaling and cancer. Genes & Development 14: 1837-1851.
POUKKA, H., U. KARVONEN, O. A. JÄNNE and J. J. PALVIMO, 2000 Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proceedings of the National Academy of Sciences of the United States of America 97: 14145-14150.
RAUSA, F. M., L. GALARNEAU, L. BÉLANGER and R. H. COSTA, 1999 The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3[beta] in the developing murine liver intestine and pancreas. Mechanisms of Development 89: 185-188.
SABLIN, E. P., I. N. KRYLOVA, R. J. FLETTERICK and H. A. INGRAHAM, 2003 Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Molecular Cell 11: 1575-1585.
SCHOONJANS, K., J. S. ANNICOTTE, T. HUBY, O. A. BOTRUGNO, E. FAYARD et al., 2002 Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO reports 3: 1181-1187.
SIRIANNI, R., J. B. SEELY, G. ATTIA, D. M. STOCCO, B. R. CARR et al., 2002 Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. Journal of Endocrinology 174.
SPENCE, J., S. SADIS, A. L. HAAS and D. FINLEY, 1995 A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Molecular and Cellular Biology 15: 1265-1273.
THROWER, J. S., L. HOFFMAN, M. RECHSTEINER and C. M. PICKART, 2000 Recognition of the polyubiquitin proteolytic signal. The EMBO Journal 19: 94-102.
TREIER, M., L. M. STASZEWSKI and D. BOHMANN, 1994 Ubiquitin-dependent c-Jun degradation in vivo is mediated by the [delta] domain. Cell 78: 787-798.
UEDA, H., G. C. SUN, T. MURATA and S. HIROSE, 1992 A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Molecular and Cellular Biology 12: 5667-5672.
VENTECLEF, N., T. JAKOBSSON, A. EHRLUND, A. DAMDIMOPOULOS, L. MIKKONEN et al., 2010 GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRβ in the hepatic acute phase response. Genes & Development 24: 381-395.
WANG, Z., M. BASSETT and W. RAINEY, 2001 Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. Journal of Molecular Endocrinology 27: 255-258.
YANG, F.-M., C.-T. PAN, H.-M. TSAI, T.-W. CHIU, M.-L. WU et al., 2009 Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS Journal 276: 425-436.
YOST, C., M. TORRES, J. R. MILLER, E. HUANG, D. KIMELMAN et al., 1996 The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Development 10: 1443-1454.
黃守賢, 2010 mLRH-1 泛素化作用之探討, pp. in 生理學研究所. 臺灣大學.
潘建廷, 2005 LRH-1 抗體製備及 LRH-1 調控 CYP11A1 之研究, pp. in 生理學研究所. 臺灣大學.
戴予辰, 2008 PIASy 抑制人類腎上腺細胞類固醇荷爾蒙生成基因的表現, pp. in 生理學研究所. 臺灣大學.
謝祥燦, 2007 LRH-1 特性及其轉錄活性受 PIASy 調控之研究, pp. in 生理學研究所. 臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41875-
dc.description.abstractLiver receptor homolog-1 (LRH-1 ; NR5A2) 隸屬孤兒核受器成員之一,對於發育、固醇類荷爾蒙生成以及脂肪代謝相當重要。然而,現今對於LRH-1 蛋白質水解的調控以及機制尚未釐清。我們利用蛋白酶體抑制劑 MG-132 處理 24 小時,發現 LRH-1 蛋白質量明顯地增多。當細胞以 cycloheximide 抑制其蛋白質生成時,發現 LRH-1 會迅速地被分解。然而,當有 MG-132 存在時即會明顯減低 LRH-1 降解的速度。當 LRH-1 和具有 HA 標籤之泛素 (HA-Ub) 共同表現於細胞,發現 LRH-1 會受到聚泛素 (polyubiquitin) 的修飾。這些結果說明 LRH-1 會經由泛素-蛋白酶體路徑而降解。若將 LRH-1 羧基端刪除,蛋白質的量會隨著羧基端的縮減而增加,MG-132 的效應則明顯降低,僅在全長 LRH-1 觀察到顯著增加,此外,泛素結合的量也隨著羧基端的刪除而減少。利用定點突變聚合酶連鎖反應將特定的離胺酸轉變成精胺酸 (K240R、K289R、K329R、K340R, 以及 K357R),相似於原生型 LRH-1 的結果,MG-132 會顯著促進 K240R、K289R、K340R,以及 K357R 蛋白質的量,但 K329R 蛋白質增加之幅度明顯下降。共同免疫沉澱 (Co-IP) 結果顯示 LRH-1 K329R 與泛素結合的量明顯低於原生型 LRH-1。處理 cycloheximide 研究 LRH-1 K329R 蛋白質半衰期,觀察到半衰期延長為 1.96 小時,而 MG-132 無法有效抑制其蛋白質水解。利用啟動子轉錄活性分析顯示 LRH-1 K329R 轉錄活性約為原生型 LRH-1 的 2.6 倍。綜合結果說明 LRH-1 K329R 與泛素結合減少,蛋白質半衰期延長,蛋白質穩定性增加,使其具有更高之轉錄活性,證實 LRH-1 離胺酸 329 為一重要位點,參與泛素-蛋白酶體之調控。zh_TW
dc.description.abstractThe orphan nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) is essential for development, steroidogenesis, and metabolism. Little is known about the mechanism(s) of the regulation of LRH-1 degradation. We demonstrated that LRH-1 protein level is significantly increased after treatment of proteasome inhibitor MG-132 for 24 hours. Incubation with cycloheximide to inhibit protein synthesis, found LRH-1 was degraded rapidly. However, the degradation rate of LRH-1 was significantly reduced in the presence of MG132. Coexpression of LRH-1 with ubiquitin (HA-Ub) revealed that LRH-1 was conjugated with polyubiquitin. These results demonstrated that ubiquitin-proteasome pathway is involved in the degradation of LRH-1. C-terminal deletion fragments of LRH-1 protein were sequentially increased in length following the augmentation of C-terminal truncation. The effect of MG-132 on LRH-1 was significantly reduced by C-terminal deletion; we merely observed the enormously increased protein level on full-length LRH-1. Moreover, ubiquitin conjugation decreases as LRH-1 C-terminal deletion expand. By carrying out site-directed mutagenesis to convert certain lysine residue to arginine residue (K240R, K289R, K329R, K340R, and K357R), we revealed K240R, K289R, K340R, and K357R protein levels were increased after treantment with MG-132. Furthermore, co-immunoprecipitation (Co-IP) result showed LRH-1 K329R possessed less ubiquitin conjugation than wild-type LRH-1. Incubation with cycloheximide to evaluate the protein half-life of LRH-1 K329R, we observed its half-life extends to 1.96 hours; however, MG-132 could not further inhibit protein degradation. Using promoter-transactivation assays, we found that transcription activity of LRH-1 K329R is 2.6 fold to wild-type LRH-1. In conclusion, the results show that LRH-1 K329R possesses less polyubiquitin conjugations, owns longer protein half-life, and has higher trans-activation activity than wild-type LRH-1. Our results unveil that residue lysine 329 of LRH-1 is indeed essential for proteasome-dependent degradation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:35:24Z (GMT). No. of bitstreams: 1
ntu-100-R98441007-1.pdf: 1773634 bytes, checksum: 9ad5e124092b85a9e08fa6b1df065153 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
致謝 I
目錄 III
圖次 V
中文摘要 VI
Abstract VII
第一章 序論 1
一、 LRH-1 簡介 1
1. LRH-1之生理功能 1
2. LRH-1之蛋白質結構 2
3. LRH-1 之轉譯後修飾作用 3
二、 泛素 (Ubiquitin)-蛋白酶體 (Proteasome) 系統 4
1. 泛素修飾之作用機轉 4
2. 泛素鍵結種類 5
3. 泛素-蛋白酶體調控之作用 6
三、 研究目的 9
第二章 材料與方法 10
一、細胞培養 10
二、質體 10
三、定點突變聚合酶連鎖反應 12
四、暫時性轉染法 (Transient transfection) 13
五、Luciferase 活性分析 14
六、蛋白質半衰期 (protein half-life) 測定 15
七、西方墨點法 (Western blot) 分析 15
八、免疫沉澱法 (Immunoprecipitation) 17
九、DAPI 染色 18
第三章 結果 19
一、 mLRH-1 受蛋白酶體系統調節 19
二、 聚泛素鏈 (polyubiquitin chain) 結合隨著 Flag-mLRH-1 蛋白質羧基端 (carboxyl terminus) 刪除而減少 20
三、 mLRH-1 離胺酸 329 泛素-蛋白質酶體系統辨認調控的位置 20
四、 mLRH-1 離胺酸 329 參與調控與聚泛素鏈之結合 21
五、 離胺酸 329 突變成精胺酸 (Flag-mLRH-1 K329R) 延長 mLRH-1 蛋白質半衰期 22
六、離胺酸 329 突變成精胺酸 (Flag-mLRH-1 K329R) 增加 mLRH-1 轉錄活性 23
第四章 討論 25
一、泛素化作用 25
二、泛素結合位置 25
三、泛素化作用調控蛋白質的穩定性 27
四、泛素化參與調控之生理功能 28
參考文獻 30
 
圖次
圖一、 MG-132 增加 Flag-mLRH-1 蛋白質量 36
圖二、MG-132 對 EGFP-mLRH-1 於細胞內分布的影響 37
圖三、MG-132 影響不同片段 Flag-mLRH-1 在細胞株的蛋白質表現量 38
圖四、聚泛素鏈 (polyubiquitin chain) 結合隨著 Flag-mLRH-1 蛋白質羧基端 (carboxyl terminus) 刪除而減少 39
圖五、 mLRH -1 離胺酸 329 會受蛋白酶體路徑所調控 40
圖六、mLRH -1 離胺酸 329 調控與聚泛素鏈之結合 41
圖七、Flag-mLRH-1 蛋白質半衰期分析 42
圖八、 Flag-mLRH-1 K329R 蛋白質半衰期分析 43
圖九、Flag-mLRH-1 K329R 蛋白質具有較長之半衰期 44
圖十、Flag-mLRH-1 K329R 具有較高之轉錄活性 45
圖十一、MG-132 對 EGFP-mLRH-1 K329R 於細胞內分布的影響 46
附錄、泛素-蛋白酶體系統調控蛋白質降解之機制 47
dc.language.isozh-TW
dc.subject泛素-蛋白&#37238zh_TW
dc.subject體依賴之蛋白質水解zh_TW
dc.subjectubiquitin-proteasome- dependent degradationen
dc.titleLRH-1 離胺酸 329 參與泛素-蛋白酶體依賴之
蛋白質水解途徑
zh_TW
dc.titleLRH-1 lysine 329 is involved in ubiquitin-proteasome- dependent degradationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬(Shwu-Fen Chang),盧主欽(Juu-Chin Lu),徐立中(Li-Chung Hsu)
dc.subject.keyword泛素-蛋白&#37238,體依賴之蛋白質水解,zh_TW
dc.subject.keywordubiquitin-proteasome- dependent degradation,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved