Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃博昭,楊偉勛
dc.contributor.authorYen-Wen Wuen
dc.contributor.author吳彥雯zh_TW
dc.date.accessioned2021-06-15T00:34:37Z-
dc.date.available2009-02-10
dc.date.copyright2009-02-10
dc.date.issued2009
dc.date.submitted2009-01-06
dc.identifier.citationAchenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004 Jan; 109(1): 14-7.
Ahn JK, Koh EM, Cha HS, et al. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology. 2008 Jun; 47(6): 834-9.
Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma. A potential mechanism of lesion stabilization. Circulation. 1998 Jun; 97(6): 2433-44.
Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest. 2007 Mar; 30(3): 210-4.
Belaiba RS, Bonello S, Zähringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007 Dec; 18(12): 4691-7.
Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004 Nov; 45(11): 1816-21.
Blankenberg S, Rupprecht HJ, Bickel C, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001 Sep; 104(12): 1336-42.
Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003 Oct; 170(2): 191-203.
Bonello S, Zähringer C, BelAiba RS, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol. 2007 Apr; 27(4): 755-61.
Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb Haemost. 2007 May; 97(5): 714-21.
Breyholz HJ, Schäfers M, Wagner S, et al. C-5-disubstituted barbiturates as potential molecular probes for noninvasive matrix metalloproteinase imaging. J Med Chem. 2005 May; 48(9): 3400-9.
Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006 Oct 17; 114(16): 1761-91.
Bural GG, Torigian DA, Chamroonrat W, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008 Mar; 35(3): 562-9.
Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005 Nov; 112(22): 3437-44.
Campana E, Parlapiano C, Borgia MC, et al. Are elevated levels of soluble ICAM-1 a marker of chronic graft disease in heart transplant recipients? Atherosclerosis 2000 Feb; 148(2): 293-5.
Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004 Oct; 95(9): 858-66.
Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004 Apr; 350(14): 1387-97.
Dansky HM, Barlow CB, Lominska C, et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol. 2001 Oct; 21(10): 1662-7.
Davies JR, Rudd JH, Fryer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron emission tomography and high-resolution magnetic resonance imaging. Stroke. 2005 Dec; 36(12): 2642-7.
de Weert TT, Ouhlous M, Meijering E, et al. In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arterioscler Thromb Vasc Biol. 2006 Oct; 26(10): 2366-72.
Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003 Jun; 168(2): 263-9.
Devaraj S, Swarbrick MM, Singh U, Adams-Huet B, Havel PJ, Jialal I. CRP and adiponectin and its oligomers in the metabolic syndrome: evaluation of new laboratory-based biomarkers. Am J Clin Pathol. 2008 May; 129(5): 815-22.
Donnan PT, Boyle DI, Broomhall J, et al. Prognosis following first acute myocardial infarction in Type 2 diabetes: a comparative population study. Diabet Med. 2002 Jun; 19(6): 448-55.
Dunphy MP, Freiman A, Larson S, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005 Aug; 46(8): 1278-84.
Egger M, Krasinski A, Rutt BK, Fenster A, Parraga G. Comparison of B-mode ultrasound, 3-dimensional ultrasound, and magnetic resonance imaging measurements of carotid atherosclerosis. J Ultrasound Med. 2008 Sep; 27(9): 1321-34.
Franke A, Lante W, Fackeldey V, et al. Pro-inflammatory cytokines after different kinds of cardio-thoracic surgical procedures: is what we see what we know? Eur J Cardiothorac Surg. 2005 Oct; 28(4): 569-75.
Fujii K, Carlier SG, Mintz GS, et al. Association of plaque characterization by intravascular ultrasound virtual histology and arterial remodeling. Am J Cardiol. 2005 Dec; 96(11): 1476-83.
Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloporoteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994 Dec; 75(6): 181-9.
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002 Feb; 90(3): 251-62.
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007 Nov; 27(11): 2292-301.
Gearing AJ, Hemingway I, Pigott R, Hughes J, Rees AJ, Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: pathological significance. Ann NY Acad Sci. 1992 Dec; 667: 324-31.
Hammoud T, Tanguay JF, Bourassa MG. Management of coronary artery disease: therapeutic options in patients with diabetes. J Am Coll Cardiol. 2000 Aug; 36(2): 355-65.
Han SH, Quon MJ, Kim JA, Koh KK. Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol. 2007 Feb; 49(5):531-8.
Higashida T, Kanno H, Nakano M, Funakoshi K, Yamamoto I. Expression of hypoxia-inducible angiogenic proteins (hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and E26 transformation-specific-1) and plaque hemorrhage in human carotid atherosclerosis. J Neurosurg. 2008 Jul; 109(1): 83-91.
Hsu RB, Chu SH, Wang SS, et al. Low incidence of transplant coronary artery disease in Chinese heart recipients. J Am Coll Cardiol. 1999 May; 33(6): 1573-7.
Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006 Jan; 332(7533): 73-8.
Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. Clin Cardiol. 2003 Feb; 26(2): 55-9.
Inoue T, Kato T, Takayanagi K, et al. Circulating matrix metalloproteinase-1 and -3 in patients with an acute coronary syndrome. Am J Cardiol. 2003 Dec; 92(12): 1461-4.
Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007 Aug; 116(9): 1052-61.
Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003 Oct 1; 59(4): 812-23.
Kardys I, Knetsch AM, Bleumink GS, et al. C-reactive protein and risk of heart failure. The Rotterdam Study. Am Heart J. 2006 Sep; 152(3): 514-20.
Kato R, Momiyama Y, Ohmori R, Taniguchi H, Nakamura H, Ohsuzu F. Levels of matrix metalloproteinase-1 in patients with and without coronary artery disease and relation to complex and noncomplex coronary plaques. Am J Cardiol. 2005 Jan; 95(1): 90-2.
Khaodhiar L, Ling PR, Blackburn GL, Bistrian BR. Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. JPEN J Parenter Enteral Nutr. 2004 Nov-Dec; 28(6): 410-5.
Klauss V, Mudra H, Ǚberfuhr P, Theisen K. Individual variability of cardiac allograft vasculopathy as assessed by intravascular ultrasound. Am J Cardiol. 1995 Sep; 76(3): 463-6.
Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003 May; 107(19): 2453-8.
Korosoglou G, Weiss RG, Kedziorek DA, et al. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using 'positive contrast' magnetic resonance imaging. J Am Coll Cardiol. 2008 Aug; 52(6): 483-91.
Koskinen PK, Lemström KB, Häyry PJ. How cyclosporine modifies histological and molecular events in vascular wall during chronic rejection of rat cardiac allograft. Am J Pathol. 1995 Apr; 146(4): 972-80.
Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007 Sep 4; 50(10): 933-9.
Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004 May; 109(17): 2046-9.
Labarrere CA, Nelson DR, Miller SJ, et al. Value of serum-soluble intercellular adhesion molecules-1 for the non-invasive risk assessment of transplant coronary artery disease, posttransplant ischemic events, and cardiac graft failure. Circulation. 2000 Sep; 102(13): 1549-55.
Langer HF, Haubner R, Pichler B, Gawaz M. Radionuclide imaging. A molecular key to the atherosclerosis plaque. J Am Coll Cardiol. 2008 Jul; 52(1): 1-12.
Lauer M, Froelicher ES, Williams M, Kligfield P; American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention.Exercise testing in asymptomatic adults: a statement for professionals from the American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2005 Aug; 112(5): 771-6.
Lee CM, Wu YW, Chou NK, et al. Intravascular ultrasound evidence of angiographically silent allograft vasculopathy inversely correlates with circulating level of hepatocyte growth factor. J Heart Lung Transplant. 2006 Dec; 25(12): 1456-61.
Lee CM, Wu YW, Jui HY, et al. Intravascular ultrasound correlates with coronary flow reserve and predicts the survival in angiographically silent cardiac transplant recipients. Cardiology. 2008; 109(2): 93-8.
Li AC, Class CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002 Nov; 8(11): 1235-42.
Libby P. Inflammation in atherosclerosis. Nature. 2002 Dec; 420(6917): 868-74.
Lombardo A, Biasucci LM, Lanza GA, et al. Inflammation as possible link between coronary and carotid plaque instability. Circulation. 2004 Jun; 109(25): 3158-63.
Lu CJ, Kao HL, Sun Y, et al. The hemodynamic effects of internal carotid artery stenting: a study with color-coded duplex sonography. Cerebrovasc Dis. 2003; 15: 264-9.
Maldonado A, He L, Game BA, et al. Pre-exposure to high glucose augments lipopolysaccharide-stimulated matrix metalloproteinase-1 expression by human U937 histiocytes. J Periodontal Res. 2004 Dec; 39(6): 415-23.
Meller J, Strutz F, Siefker U, et al. Early diagnosis and follow-up or aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging. 2003 May; 30(5): 730-6.
Miller LW, Schlant RC, Kobashigawa J, Kubo S, Renlund DG. 24th Bethesda conference: Cardiac Transplantation. Task Force 5: Complications. J Am Coll Cardiol. 1993 Jul; 22(1): 41-54.
Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease study. Lancet. 1997 May; 349(9064): 1498-504.
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient. A call for new definition and risk strategies: Part I. Circulation. 2003 Oct; 108(14): 1664-72.
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient. A call for new definition and risk strategies: Part II. Circulation. 2003 Oct; 108(15): 1772-8.
Naghavi M, Falk E, Hecht H, et al. From vulnerable plaque to vulnerable patient – part III. Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) task force report. Am J Cardiol. 2006 Jul; 98(2A): 2H-15H.
Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007 Oct 2; 50(14): 1343-53.
Nareika A, Im YB, Game BA, et al. High glucose enhances lipopolysaccharide- stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kappaB and AP-1 activities. J Endocrinol. 2008 Jan; 196(1): 45-55.
Nareika A, Sundararaj KP, Im YB, et al. High glucose and interferon gamma synergistically stimulate MMP-1 expression in U937 macrophages by increasing transcription factor STAT1 activity. Atherosclerosis. 2008 Jun 27 (E-pub)
Nicholls SJ, Tuzcu EM, Kalidindi S, et al. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 2008 Jul; 52(4): 255-62.
Nikkari ST, O’Brien KD, Ferguson M, et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 1995 Sep; 92(6): 1393-8.
North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991 Aug; 325(7): 445-53.
O’Brien KD, McDonald TO. Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 1996 Feb; 93(4): 672-82.
Ogawa M, Ishino S, Mukai T, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med. 2004 Jul; 45(7): 1245-50.
Oguchi S, Dimayuga P, Zhu J, et al. Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler Thromb Vasc Biol. 2000 Jul; 20(7): 1729-36.
Okamoto Y, Kihara S, Ouchi N, et al. Adiponectin reduces atherosclerosis in Apolipoprotein E-deficient mice. Circulation. 2002 Nov; 106(22): 2767-70.
Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001 Feb; 103(8): 1057-63.
Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003 Feb; 107(5): 671-4.
Papadopoulou C, Corrigall V, Taylor PR, Poston RN. The role of the chemokines MCP-1, GRO-alpha, IL-8 and their receptors in the adhesion of monocytic cells to human atherosclerotic plaques. Cytokine. 2008 Aug; 43(2): 181-6.
Pearce E, Tregouet DA, Samnegård A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res. 2005 Nov; 97(11): 1070-6.
Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Center for Disease Control and Prevention and the American Heart Association. Circulation. 2003 Jan; 107(103): 499-511.
Peter K, Nawroth P, Conradt C, et al. Circulating vascular cell adhesion molecule-1 correlates with the extent of human atherosclerosis in contrast to circulating intercellular adhesion molecule-1, E-selectin, P-selectin, and thrombomodulin. Arterioscler Thromb Vasc Biol. 1997 Mar; 17(3): 505-12.
Pigott R, Dillon LP, Hemingway IH, Gearing AJ. Soluble forms of E-selectin, ICAM-1, and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophy Res Commun. 1992 Sep; 187(2): 584-9.
Preiss DJ, Sattar N. Vascular cell adhesion molecule-1: a viable therapeutic target for atherosclerosis? Int J Clin Pract. 2007 Apr; 61(4): 697-701.
Qiao JH, Ruan XM, Trento A, et al. Expression of cell adhesion molecules in human cardiac allograft rejection. J Heart Lung Transplant. 1992 Sep-Oct; 11(5): 920-5.
Raff GL, Goldstein JA. Coronary angiography by computed tomography: coronary imaging evolves. J Am Coll Cardiol. 2007 May; 49(18): 1830-3.
Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008 Jan; 75(2): 346-59.
Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008 Jun; 453(7196): 807-11.
Rodriguez-Granillo GA, García-García HM, Mc Fadden EP, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005 Dec; 46(11): 2038-42.
Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999 Jan; 340(2): 115-26.
Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002 Jun; 105 (23): 2708-11.
Rudd JH, Myers KS, Bansilal S, et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007 Aug 28; 50(9): 892-6.
Rudd JH, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008 Jun; 49(6): 871-8.
Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005 Jan; 25(1): 234-9.
Saam T, Hatsukami T, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007 Jul; 244(1): 64-77.
Sadahiro M, McDonald TO, Allen MD. Reduction in cellular and vascular rejection by blocking leukocyte adhesion molecule receptors. Am J Pathol. 1993 Mar; 142(3): 675-83.
Sakalihasan N, Van Damme H, Gomez P, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2002 May; 23(5): 431-6.
Schafers M, Riemann B, Kopka K, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004 Jun; 109(21): 2554-9.
Schmid M, Achenbach S, Ropers D, et al. Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol. 2008 Mar; 101(5): 579-84.
Shatrov VA, Sumbayev VV, Zhou J, Brüne B. Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanisms. Blood. 2003 Jun; 101(12): 4847-9.
Singh RJ, Mason JC, Lidington EA, et al. Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc Res. 2005 Jul; 67(1): 39-49.
Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008 Apr; 51(13): 1258-65.
Su MYM, Lee BC, Wu YW, et al. Evaluation of perfusion of residual viable myocardium in non-transmural infarct zone after percutaneous coronary intervention: quantitative myocardial blood flow measurement using magnetic resonance. Radiology. 2008 Dec; 249(3): 820-8.
Sukhova GK, Schönbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation. 1999 May; 99(19): 2503-9.
Suzuki J, Isobe M, Yamazaki S, Horie S, Okubo Y, Sekiguchi M. Inhibition of accelerated coronary atherosclerosis with short-term blockade of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in a heterotopic murine model of heart transplantation. J Heart Lung Transplant. 1997 Nov; 16(11): 1141-8.
Tacchini L, Gammella E, De Ponti C, Recalcati S, Cairo G. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem. 2008 Jul; 283(30): 20674-86.
Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006 Nov 7; 48(9): 1825-31.
Tahara N, Kai H, Yamagishi S, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007 Apr 10; 49(14): 1533-9.
Tahara N, Kai H, Nakaura H, et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. Eur Heart J. 2007 Sep; 28(18): 2243-8.
Tang T, Howarth SP, Miller SR, et al. Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke. 2006 Sep; 37(9): 2266-70.
Tanio JW, Basu CB, Albelda SM, Eisen HJ. Differential expression of the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin in normal and posttransplantation myocardium. Cell adhesion molecule expression in human cardiac allografts. Circulation. 1994 Apr; 89(4): 1760-8.
Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke. 2006 Mar; 37(3): 818-23.
Takemura Y, Walsh K, Ouchi N. Adiponectin and cardiovascular inflammatory responses. Curr Atheroscler Rep. 2007 Sep; 9(3): 238-43.
Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology. 2003 Dec; 229(3): 831-7.
Tawakol A, Migrino RQ, Hoffmann U, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005 May-Jun; 12(3): 294-301.
Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006 Nov 7; 48(9): 1818-24.
Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008 Mar-Apr; 14(3-4): 222-31.
Vesely MR, Dilsizian V. Nuclear cardiac stress testing in the era of molecular medicine. J Nucl Med. 2008 Mar; 49(3): 399-413.
Vink A, Schoneveld AH, Lamers D, et al. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis. 2007 Dec; 195(2): e69-75.
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May; 92(8): 827-39.
Wagner S, Breyholz HJ, Faust A, et al. Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem. 2006; 13(23): 2819-38.
Weis M, von Scheidt W. Cardiac allograft vasculopathy: a review. Circulation. 1997 Sep; 96(6): 2069-77.
Windram JD, Loh PH, Rigby AS, Hanning I, Clark AL, Cleland JG. Relationship of high-sensitivity C-reactive protein to prognosis and other prognostic markers in outpatients with heart failure. Am Heart J. 2007 Jun; 15(6): 1048-55.
Wu YW, Yen RF, Lee CM, et al. Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J Heart Lung Transplant. 2005 May; 24(5): 544-50.
Wu YW, Yen RF, Lee CM, et al. Usefulness of progressive inhomogeneity of myocardial perfusion and chronotropic incompetence in detecting cardiac allograft vasculopathy: evaluation with dobutamine thallium-201 myocardial SPECT. Cardiology. 2005; 104(3): 156-61.
Wu YW, Huang PJ, Lee CM, et al. Assessment of myocardial viability using F-18 fluorodeoxyglucose/Tc-99m sestamibi dual-isotope simultaneous acquisition SPECT: comparison with Tl-201 stress-reinjection SPECT. J Nucl Cardiol. 2005 Jul-Aug; 12(4): 451-9.
Wu YW, Tadamura E, Yamamuro M, et al. Evaluation of three-dimensional navigator-gated whole heart MR coronary angiography: the importance of systolic imaging in subjects with high heart rate. Eur J Radiol. 2007 Jan; 61(1): 91-6.
Wu YW, Tadamura E, Yamamuro M, et al. Comparison of contrast-enhanced MRI with 18F-FDG PET/201Tl-SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med. 2007 Jul; 48(7): 1096-103.
Wu YW, Hsu CL, Wang SS, et al. Impaired exercise capacity in diabetic patients after coronary bypass surgery: effects of diastolic and endothelial function. Cardiology. 2008; 110(3): 191-8.
Wu YW, Lee WJ, Wang TD, et al. Interactive 3D hybrid PET/CT imaging in the identification of myocardial viability in patients after myocardial infarction: feasibility study and clinical implications. J Formos Med Assoc. 2008 Jun; 107(6): 470-7.
Yamashita A, Shoji K, Tsuruda T, et al. Medial and adventitial macrophages are associated with expansive atherosclerotic remodeling in rabbit femoral artery. Histol Histopathol. 2008 Feb; 23(2): 127-36.
Yamazaki S, Isobe M, Suzuki J, et al. Role of selectin-dependent adhesion in cardiac allograft rejection. J Heart Lung Transplant. 1998 Oct; 17(10): 1007-16.
Yang WS, Lee WJ, Funahashi T, et al. Plasma adiponectin levels in overweight and obese Asians. Obes Res. 2002 Nov; 10(11): 1104-10.
Yang WS, Chuang LM. Human genetics of adiponectin in the metabolic syndrome. J Mol Med. 2006 Feb; 84(2): 112-21.
Ye S, Gale CR, Martyn CN. Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease. Eur Heart J. 2003 Sep; 24(18): 1668-71.
Yen RF, Chen YC, Wu YW, Pan MH, Chang SC. Using 18-fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis: A preliminary report. Academic Radiology. 2004 Mar; 11(3): 316-21.
Yu Y, Koike T, Kitajima S, et al. Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histol Histopathol. 2008 Dec; 23(12): 1503-16.
Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F-F-FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med. 2002 Jan; 32(1): 70-6.
Zerfaoui M, Suzuki Y, Naura AS, Hans CP, Nichols C, Boulares AH. NF-kappaB target genes, such as IL-8, IL2RA, IRF4, VCAM-1 and VEGF. Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal. 2008 Jan; 20(1): 186-94.
Zhang XP, Kelemen SE, Eisen HJ. Quantitative assessment of cell adhesion molecule gene expression in endomyocardial biopsy specimens from cardiac transplant recipients using competitive polymerase chain reaction. Transplantation 2000 Aug; 70(3): 505-13.
Zhou Z, Connell MC, MacEwan DJ. Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal. 2007 Jun; 19(6): 1238-48.
Zierler RE. Basic and practical aspects of cerebrovascular testing. In: Bernstein EF, ed. Vascular diagnosis. 4th ed. St Louis, Mo: Mosby Yearbook 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41857-
dc.description.abstract研究背景:
心血管疾病在國人的罹病率、死亡率、造成的醫療照護支出及社會成本逐年快速增加,付出之醫療及社會相關成本超過惡性腫瘤的比重。研究顯示,不穩定性斑塊產生裂隙、突然破裂及後續之血栓形成,是造成急性心肌梗塞、猝死及缺血性腦中風等病變的主要原因。因此在症狀及併發症發生前,對高危險病群早期診斷及積極治療,極為重要;而心血管疾病之臨床表現、分子影像及相關的基礎之研究及其整合,對於該疾病發生之早期偵測及預後評估都有莫大的助益。
動脈硬化疾病的發生是由致病性脂蛋白等引起的急性發炎;白血球受到多種趨化激素吸引,加上多種細胞黏著分子合成或被活化,將白血球與內皮細胞繫鏈在一起,使白血球變形且內皮細胞的間隙打開,讓白血球進入組織形成浸潤。另一方面,基質金屬蛋白酶 (matrix metalloproteinases, MMPs) 會分解細胞間質,使斑塊纖維蓋弱化,產生裂隙、潰瘍、崩解,造成動脈硬化加劇。
偵測「不穩定性斑塊」(vulnerable plaques) 是臨床診斷的一大挑戰。不穩定性斑塊主要組織學變化包括發炎細胞 (單核球、巨噬細胞及部分T 細胞) 的浸潤,斑塊多具有薄蓋及巨大脂肪核心,內皮裸露,血小板凝集,出現裂隙或是造成嚴重管腔阻塞。近年來超音波、電腦斷層 (computed tomography, CT) 及磁振造影 (magnetic resonance imaging, MRI) 在斑塊結構分析有不少進步,不過多以解剖變化為主,對於發炎偵測及斑塊破裂跟併發症的預測仍未臻理想。核醫影像利用細胞代謝功能的變化來造影,其中氟-18去氧葡萄糖(18F-fluorodeoxyglucose, 18F-FDG)會蓄積於發炎部位,與發炎細胞的代謝活性成正相關。過去小動物實驗及臨床研究觀察到血管炎或動脈硬化時,18F-FDG在血管壁的蓄積量會增加,與預後有關,且在消炎或降血脂藥物治療後活性會減少,顯示18F-FDG為一有潛力的同位素示蹤劑。早期的正子電腦斷層影像 (positron emission tomography, PET) 解析力較差,新近科技發展迅速,當代的正子電腦斷層掃描儀 (PET scanner) 配有CT,可得清晰的解剖及代謝功能的融合影像,可做全身性掃描,並對發炎部位也可以作定性及半定量分析,可能是研究動脈硬化機轉及治療效果最具潛力的造影工具。
由於炎症反應跟動脈硬化及不穩定性斑塊形成關係密切,曾被研究過的血液指標很多,但何者最為重要卻未有定論。牽涉白血球和內皮細胞交互作用的分子中,VCAM-1是匯聚巨噬細胞的重要黏著因子之ㄧ,且早在斑塊形成之前就已經出現。另一方面,根據組織學及動脈硬化動物模型的研究顯示,MMP-1可被多種趨化激素及生長激素誘發,集中於富含巨噬細胞的區域,是動脈硬化斑塊主要成分之ㄧ,也可能是具有潛力的不穩定斑塊生化指標。過去曾有少數報告指出MMP-1與急性冠心症或是冠狀動脈複雜性病灶有關,不過,迄今仍欠缺大型的研究來證實MMP-1在臨床上的應用價值。對於這些血液指摽的臨床價值及其調控機轉仍有待進一步研究。
巨噬細胞為動脈硬化斑塊中的主要細胞,與斑塊的不穩定有密切的關係,在斑塊裡的分布也符合18F-FDG示蹤劑及MMP-1在斑塊中聚集的位置。過去,動脈硬化的研究大多利用血管細胞株 (例如內皮細胞或平滑肌細胞株) 進行,並不能完全反應斑塊真正的變化,而研究巨噬細胞的訊息傳遞及基因表現機轉,應有助於吾人對動脈硬化斑塊的了解。由於流行病學研究已知糖尿病為動脈硬化疾病的重要危險因子,新近糖尿病這項危險因子對心血管的危險性更被視為等同於冠心症。當血糖升高會增加細胞的氧化壓力並誘發全身的發炎反應,可加速動脈硬化,進一步造成各種心血管併發症。我們利用THP-1細胞 (monoblastic leukemic cell line) 的分化過程模擬發炎過程,建立實驗室動脈斑塊研究的細胞模式,研究高糖環境的影響及巨噬細胞的調控機轉,是有其必要性。
研究目的:
1. 探討18F-FDG PET/CT在頸動脈硬化斑塊造影的可行性,並分析18F-FDG PET/CT動脈斑塊造影,與血液中生化代謝指標、臨床預後 (如急性缺血性腦中風發生率、經導管支架置入治療產生栓塞併發症及支架再狹窄等) 的關連性。
2. 研究週邊各項血液指標 (如hs-CRP、MMP-1及VCAM-1等) 預測頸動脈狹窄、冠狀動脈心臟病或換心後植體冠狀動脈血管病變等的可行性及其價值。
3. 建立實驗室巨噬細胞高糖環境模式,研究:
(a) 高糖環境是否會使分化後的巨噬細胞MMP-1表現量增加;
(b) 降血糖藥物是否可以抑制MMP-1;
(c) MMP-1是否經由nuclear factor-kB (NF-kB)或 Jun N-terminal kinase (JNK) 的途徑進行調控,以及MMP-1與HIF-1α的相關性;
(d) 建立MMP-1與代謝症候群、糖尿病及不穩定動脈斑塊間之關聯性。
研究方法:
1. 在25位換心者導管檢查時經冠狀靜脈竇採血,分析心肌切片及冠狀動脈攝影所見,探討冠狀竇的E-selectin、ICAM-1及 VCAM-1濃度與急性排斥及植體冠狀血管病變的關連性。
2. 我們首先在25位頸動脈狹窄患者與22位接受健康檢查的受試者做18F-FDG PET/CT全身動脈造影,研究動脈斑塊的性質與周邊血液的總白血球數量、hs-CRP及MMP-1的相關性;進一步比較37位頸動脈狹窄患者與84位對照組在周邊血液指標的差異性。利用血管內支架置入造成動脈硬化斑塊破裂,探索支架置入術前後,動脈斑塊受擠壓時周邊血液中MMP-1短時間的變化。
3. 比較217位重度冠狀動脈狹窄患者 (二條或以上冠狀動脈或其主要分枝具有50%或以上管徑狹窄) 與81位對照組在周邊血液指標 (包括MMP-1、hs-CRP 及adiponectin) 的差異性,探討這些血液指標作為評估動脈硬化疾病的臨床價值。
4. 在THP-1細胞株的研究,利用THP-1經phorbol 12-myristate 13-acetate (PMA) 誘發分化模擬急性炎症反應研究MMP-1表現量的變化,探討高糖環境的影響,進一步比較糖尿病藥物 (glimepiride、metformin及BRL 49653) 在高糖環境下MMP-1表現量在分化的THP-1細胞株的變化。最後,利用低氧誘導因子1α (Hypoxia-inducible factor-1α, HIF-1α) 的增強劑或抑制劑,研究MMP-1跟HIF-1α之間的關連性。並利用NF-kB及JNK抑制劑的有無,研究HIF-1α及MMP-1是否均經由NF-kB及JNK途徑進行調控。
結果:
1. 25位換心者共接受過40次的心肌切片及冠狀動脈攝影,在冠狀靜脈竇的細胞黏著分子濃度與心肌切片急性排斥分級 (International Society for Heart and Lung Transplantation grade, ISHLT grade) 間並無顯著關聯性。其中六位換心者發生植體血管病變。我們的結果顯示是否發生植體血管病變,與冠心病的危險因子、術前疾病、人類白血球組織抗原或急性排斥次數等均無明顯相關性;僅VCAM-1在發生植體血管病變者明顯升高 (1015.9 ± 457.3 vs. 594.8 ±233.0 ng/mL, P = 0.005)。在接受過兩次或以上檢查的12 位受試者,共有三位的VCAM-1值明顯的隨換心後時間而升高,其中兩位最終出現植體血管病變。
2. 正子影像研究顯示,18F-FDG 會在動脈硬化斑塊蓄積,未必與血管壁的鈣化程度成正相關性;頸動脈硬化斑塊的18F-FDG 蓄積量與周邊血液的MMP-1成正相關,顯示斑塊內18F-FDG 的蓄積跟MMP-1 成份有關。支架置入後MMP-1 會立即升高,表示頸動脈斑塊被擠壓時將大量MMP-1 釋出,佐證MMP-1 為動脈硬化斑塊裡的主要成分之一。
3. 在多條冠狀動脈阻塞患者,其周邊血液中的MMP-1 及hs-CRP 均明顯地較對照組為高,但與adiponectin 無關;多變項分析顯示MMP-1 甚至比hs-CRP 更具預測價值,顯示MMP-1 可作為動脈硬化疾病的周邊血液生化標記,。
4. THP-1 細胞被PMA 誘發分化時MMP-1 基因表現量會顯著增加,高糖狀態時更為明顯。無論是glimepiride,metformin 及BRL 49653 (rosiglitazone, PPAR γagonist) 都可抑制高糖狀態時MMP-1 的表現,其中以 BRL 49653 抑制效果最為明顯。NF-κB 抑制劑 (IMD-0354) 及JNK 抑制劑 (SP-600125) 均可抑制MMP-1 的表現,尤其是NF-κB 抑制劑有顯著的劑量效應。THP-1 經PMA 分化時,HIF-1α 蛋白的量會增加,而NF-κB 抑制劑可減少HIF-1α 蛋白的量,顯示HIF-1α 也可能經由NF-κB 的途徑調控。我們進一步發現,MMP-1 基因表現量也受HIF-1α 促進及抑制劑的調控,暗示HIF-1α 可能是MMP-1 的上游調控因子之ㄧ。
結論:
本論文顯示冠狀靜脈竇血液中 VCAM-1 的升高與植體發生動脈硬化有關,具有預測心臟移植後換心人發生冠狀動脈病變的價值。本研究亦顯示18F-FDGPET/CT 在動脈斑塊影像的應用價值,進一步證明MMP-1 是動脈硬化斑塊中重要的成分,並與18F-FDG 的蓄積量成正相關性。在THP-1 細胞模式下,MMP-1的基因表現量在巨噬細胞分化時會增加,在高糖時尤其明顯,並受到NF-κB/JNK途徑調控。同時,本研究發現HIF-1α 可能與MMP-1 有關,顯示MMP-1 在動脈硬化斑塊的不穩性上扮演重要的角色。
zh_TW
dc.description.abstractBackground:
Rupture of atherosclerotic plaques and subsequent formation of thrombi are currently recognized as the major cause of morbidity and mortality in ischemic stroke and cardiovascular diseases, including acute coronary syndrome. Several imaging modalities have shown promises as potential surrogate markers for atherosclerosis. They may help clinicians and investigators to directly visualize atherosclerotic plaque burden, refine cardiovascular risk assessments, and allow serial monitoring of disease activity once interventions have been initiated.
The proposed major criteria for defining vulnerable plaques, based on the autopsy studies, include active inflammation (monocyte/macrophage and sometimes T-cell infiltration), thin cap with large lipid core, endothelial denudation with superficial platelet aggregation, fissured plaque and severe luminal stenosis. Conventional imaging of atherosclerosis is based on the degree of luminal stenosis and morphologic characteristics of atheromas, including X-ray contrast angiography, computed tomography (CT) and magnetic resonance (MR) imaging. Nuclear imaging also has the ability to non-invasively image pathophysiological process of atherosclerosis. Recent studies have shown that 18F-fluorodeoxyglucose (18F-FDG) accumulates in macrophage-rich plaques and the inflammatory activity of individual plaques could be detected and measured by using positron emission tomography (PET). In addition, hybrid PET/CT scanners could detect calcification and provide better localization of systemic atherosclerotic plaques, thus may allow to screen, diagnose or monitor treatment response in patients with atherosclerosis.
Atherosclerosis is a complex and multifactorial disorder, and a specific profile of biomarkers may help identify subjects at risk for progressive atherosclerosis or plaque rupture. Inflammation plays a significant role in the pathogenesis and progression of atherosclerosis. Numerous systemic serological markers have been reported to provide additional information about the risk of developing cardiovascular disease and reflect the overall burden of atherosclerosis. However, many of these are not specific to systemic atherosclerosis or plaque vulnerability, and the clinical significance remains to be elucidated. Levels of cellular adhesion molecules (such as E-selectin, ICAM-1, VCAM-1) may reflect extent of expression and/or shedding of molecules on endothelial surface that are influenced by pro-inflammatory cytokines. Recent data have suggested that macrophages and vascular smooth muscle cells are important component of vulnerable plaques, and are the sources of matrix metalloproteinases (MMPs) production. Several immunochemical findings have showed that MMP-1 is abundant in the macrophage-rich shoulder regions of atherosclerotic plaques and is robustly induced by cytokines and growth factor. However, scant studies have reported that MMP-1 is associated with acute coronary syndrome and the presence of complex coronary lesions. The significance of circulating levels of MMP-1 remains to be evaluated in larger-scale clinical studies.
Macrophages are important for intracellular lipid accumulation and foam cell formation in the process of atherosclerosis. MMPs secretion by macrophages is believed to play a key role in the matrix degradation that underlies atherosclerotic plaque instability. Diabetes is a major risk factor for atherosclerosis, thus we investigate the regulatory mechanism of MMP-1 in THP-1 differentiated macrophages under high glucose media.
Purposes:
The aims of this study are to evaluate the feasibility of 18F-FDG PET/CT as a non-invasive imaging modality in the detection of systemic atherosclerosis, and correlation between characteristics of atherosclerotic plaques by using 18F-FDG PET/CT and circulating biomarkers among subjects with or without carotid stenosis. We further evaluate the role of cellular adhesion molecules in patients with transplant vasculopathy and MMP-1 in patients with significant atherosclerosis. We establish an in-vitro system of THP-1 monoblastic leukemic cell-line to explore MMP-1 and hypoxia-inducible factor-1α (HIF-1α) expression and regulation signal pathways including nuclear factor-kB (NF-kB) or c-Jun N-terminal kinase (JNK) pathways, especially in high glucose conditions. We also evaluate the relationship between hypoxia-inducible factor-1α (HIF-1α) and MMP-1.
Research Designs and Results:
1. We analyzed ICAM-1, VCAM-1 and E-selectin levels from the coronary sinus of 25 cardiac allograft recipients, correlated with the degree of acute rejection detected in endomyocardial biopsy specimens and the presence of transplant vasculopathy assessed with coronary angiography. We found that VCAM-1 significantly increased in patients with transplant vasculopathy compared with those without transplant vasculopathy, whereas E-selectin and ICAM-1 did not.
2.We examined 25 patients with significant carotid stenosis (≥ 50%) and 22 controls using 18F-FDG PET/CT. 18F-FDG arterial uptake, as well as calcifications, was significantly higher in extensive distributions in patients with established carotid stenosis; but their distribution was not consistently overlapping. The values of circulating MMP-1 and leukocyte counts were significantly higher in patients with carotid stenosis (all P < 0.05). In addition, subjects with higher 18F-FDG uptake (SUVmax > 2.0) on target lesions had higher baseline and post-stenting MMP-1 levels (all P < 0.05). We further measured hs-CRP and MMP-1 in 37 patients with significant carotid stenosis and 84 controls. We also confirmed that patients with carotid stenosis exhibited significant higher MMP-1 as compared with controls, but no difference in hs-CRP. Moreover, MMP-1 elevated immediately after stenting (n = 30). In multivariate analyses, MMP-1 was negatively correlated with statin and angiotensin converting enzyme inhibitor/angiotensin-II receptor blocker use in controls.
3. MMP-1, hs-CRP and adiponectin were measured in 217 subjects with angiographically documented multivessel coronary artery disease (CAD, two or three-vessel disease by luminal stenosis ≥ 50%) and 81 controls. MMP-1 and hs-CRP were notably higher in patients with CAD; while adiponectin was not significantly different between two groups. Levels of hs-CRP positively correlated with body mass index and left ventricular dysfunction (R2 = 0.16, P < 0.0001); while adiponectin was significantly associated with age, gender, and levels of cholesterol and triglyceride (R2 = 0.09, P < 0.0001). On the contrary, MMP-1 was not associated with any clinical cardiovascular risk factors, and still an independent predictor (OR = 1.49, P < 0.0001) of multivessel CAD after the adjustment of clinical risk factors and hs-CRP.
4. We have established an in-vitro THP-1 macrophage cell model. THP-1 treated with PMA may mimic inflammatory stimulation. High glucose concentration could augment PMA-stimulated MMP-1 expression in THP-1. MMP-1 mRNA expression is through cytokines/inflammatory process, via NF-κB and JNK pathways, especially NF-κB. Of glimepiride, metformin and BRL-49653 (rosiglitazone, PPAR γ agonist), BRL-49653 notably attenuates PMA-stimulated MMP-1 expression in THP-1 in high glucose concentration. We have demonstrated that PMA could upregulate HIF-1α which is suppressed by NF-κB inhibitor. HIF-1α inducers could upregulate MMP-1 while HIF-1α inhibitor could attenuate MMP-1, suggesting MMP-1 could be regulated by HIF-1α.
Conclusions:
This study has demonstrated that an increased coronary sinus level of sVCAM-1 is a reliable marker in assessing cardiac transplant vasculopathy. Our study has also shown that 18F-FDG PET/CT imaging could be used as an adjunct to the clinical management of high-risk atherosclerosis and an in vivo tool to study plaque biology. Elevated MMP-1 could predict the presence of advanced atherosclerosis. Higher levels and rapid surge after stenting in patients with carotid stenosis support MMP-1 is an important composition of plaques. Our investigation provides a link
between 18F FDG uptake and MMP-1. In THP-1 cell model, increased transcription of macrophage MMP-1 under high glucose conditions provides a mechanism for accelerated atherosclerosis in diabetes. MMP-1 expression is regulated via NF-κB and JNK pathways, as well as HIF-1α., thus providing a molecular basis for regulation of MMP-1 in differentiated THP-1 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:34:37Z (GMT). No. of bitstreams: 1
ntu-98-D91421012-1.pdf: 3919885 bytes, checksum: c0bb515d12cb2e8fd6d9de082903df15 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試審定書
致謝
中文摘要 i
英文摘要 v
博士論文內容
第一章 緒論 1
1.1動脈粥狀硬化的發生 2
1.2動脈粥狀硬化的進程及不穩定斑塊的形成 4
1.3不穩定性動脈硬化斑塊的診斷 6
1.4 動脈硬化的細胞模式研究 13
1.5 研究目的 16
第二章 研究方法與材料 17
2.1 評估細胞黏著分子對於預測換心後植體血管病變的應用價值 17
2.2 18F-FDG PET/CT及MMP-1在頸動脈硬化的應用價值 19
2.3 評估MMP-1在預測冠心症的應用價值 23
2.4 THP-1巨噬細胞研究模式 25
第三章 結果 29
3.1 評估細胞黏著分子對於預測換心後植體血管病變的應用價值 29
3.2 18F-FDG PET/CT及MMP-1在頸動脈硬化的應用價值 30
3.3 評估MMP-1在預測冠心症的應用價值 33
3.4 THP-1巨噬細胞研究模式 34
第四章 討論 36
4.1 評估細胞黏著分子對預測換心後植體冠狀血管硬化病變的價值 38
4.2 18F-FDG PET/CT作為動脈硬化斑塊造影的應用價值 42
4.3 評估MMP-1作為動脈硬化的周邊血液生化指標之臨床應用價值 46
4.4 THP-1巨噬細胞研究模式 50
4.5 結論 53
第五章 展望 55
第六章 論文英文簡述(summary) 60
參考文獻 73
表格 90
表一:與血管組織相關的基質金屬蛋白酶一覽表
第一部份:評估細胞黏著分子預測換心後植體血管病變的應用價值 (表二)
第二部份:18F-FDG PET/CT及MMP-1在頸動脈硬化的應用價值
(表三至表八)
第三部份:評估MMP-1在預測冠心症的應用價值
(表九至表十一)
圖 102
圖一至圖三:各種影像工具的應用
圖四:THP-1細胞經PMA誘發分化成巨噬細胞
圖五:THP-1 巨噬細胞模式實驗設計
第一部份:評估細胞黏著分子預測換心後植體血管病變的應用價值 (圖六)
第二部份:18F-FDG PET/CT及MMP-1在頸動脈硬化的應用價值
(圖七—圖十一)
第三部份:評估MMP-1在預測冠心症的應用價值 (圖十二)
第四部份:THP-1巨噬細胞研究模式 (圖十三至圖十五)
附錄:相關論文
1. Wu YW, Lee CM, Lee YT, Wang SS, Huang PJ. Value of circulating adhesion molecules in the assessment of cardiac allograft rejection. J Heart Lung Transplant. 2003 Jul-Aug; 22(4): 1284-7.
2. Wu YW, Lin LC, Lin MS, Chao CL, Kao HL. Prevalence of concomitant atherosclerotic arterial diseases in patients with significant cervical carotid artery stenosis in Taiwan. Int J Cardiovasc Imaging. 2007 Aug; 23(4): 433-9.
3. Wu YW, Kao HL, Chen MF, Lee BC, Tseng WYI, Jeng JS, Tzen KY, Yen RF, Huang PJ, Yang WS. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med. 2007 Feb; 48(2): 227-33.
4. Wu YW, Yang WS, Lee BC, Chen MF, Hung CS, Liu YC, Jeng JS, Huang PJ, Kao HL. High circulating matrix metalloproteinase-1 levels and its rapid surge after intervention in patients with significant carotid stenosis. J Formos Med Assoc. 2008 Jan; 107(1): 93-8.
5. Hwang JJ, Yang WS, Chiang FT, Chen MF, Lin HJ, Huang PJ, Hsu SHJ, Lai SK, Wu YW* (*corresponding author). Increased matrix metalloproteinase-1 concentrations are associated with advanced coronary artery disease. Atherosclerosis. 2009 (in press)
dc.language.isoen
dc.subject氟-18去氧葡萄糖zh_TW
dc.subject不穩定動脈硬化斑塊zh_TW
dc.subject正子掃描zh_TW
dc.subject巨噬細胞zh_TW
dc.subject第一型基質金屬蛋白酵素zh_TW
dc.subjectVulnerable Plaqueen
dc.subjectMatrix Metalloproteinase-1 (MMP-1)en
dc.subject18F-fluorodeoxyglucose (18F-FDG)en
dc.subjectMacrophageen
dc.subjectAtherosclerosisen
dc.subjectPositron Emission Tomography (PET)en
dc.title動脈硬化斑塊之特徵:型態學、代謝學及臨床表現之相關研究zh_TW
dc.titleCharacterization of Atherosclerotic Plaques: A Morphological, Metabolic and Clinical Studyen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.advisor-orcid,楊偉勛(wsyang@ntu.edu.tw)
dc.contributor.oralexamcommittee江福田,曾文毅,王寧,林幸榮
dc.subject.keyword不穩定動脈硬化斑塊,氟-18去氧葡萄糖,正子掃描,巨噬細胞,第一型基質金屬蛋白酵素,zh_TW
dc.subject.keywordAtherosclerosis,Vulnerable Plaque,18F-fluorodeoxyglucose (18F-FDG),Positron Emission Tomography (PET),Macrophage,Matrix Metalloproteinase-1 (MMP-1),en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2009-01-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved