Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊德良
dc.contributor.authorMeng-Huang Guen
dc.contributor.author古孟晃zh_TW
dc.date.accessioned2021-06-15T00:32:50Z-
dc.date.available2014-01-20
dc.date.copyright2009-01-20
dc.date.issued2008
dc.date.submitted2009-01-14
dc.identifier.citation[1] J. C. Tannehill, D. A. Anderson and R. H. Pletcher, Computational fluid mechanics and heat transfer, Taylor & Francis, 1984.
[2] R. W. Lewis, P. Nithiarasu and K. N. Seetharamu, Fundamentals of the finite element method for heat and fluid flow, John Wiley & Sons, 2004.
[3] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall, 2007.
[4] C.A. Brebbia and J. Dominguez, Boundary elements: an introductory course, McGraw-Hill, 1992.
[5] J. J. Monaghan, Simulating free surface flows with SPH, Journal of computational physics, Vol. 110, pp. 399-406, 1994.
[6] B. Amaziane, A. Naji and D. Ouazar, Radial basis function and genetic algorithms for parameter identification to some groundwater flow problems, CMC-Computers materials & continua, Vol. 1, pp. 117-128, 2004.
[7] C. J. S. Alves, P. R. S. Antunes, The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes, CMC-Computers materials & continua, Vol. 2, pp. 251-265, 2005.
[8] D. L. Young, K. H. Chen and C. W. Lee, Novel meshless method for solving the potential problems with arbitrary domain, Journal of computational physics, Vol. 209, pp. 290-321, 2005.
[9] V. D. Kupradze and M. A. Aleksidze, The method of fundamental solutions for the approximate solution of certain boundary value problems, U.S.S.R. Computational mathematics and mathematical physics, Vol. 4, pp. 82-126, 1964.
[10] R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problem by fundamental solutions, SIAM Journal on mathematical analysis, Vol. 14, pp. 638-650, 1977.
[11] M. A. Golberg, The method of fundamental solutions for Poisson's equation, Engineering analysis with boundary elements, Vol. 16, pp. 205-213, 1995.
[12] D. L. Young, C. C. Tsai, K. Murugesan, C. M. Fan and C. W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering analysis with boundary elements, Vol. 28, pp. 1463-1473, 2004.
[13] D. L. Young, C. C. Tsai and C. M. Fan, Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods, Journal of the Chinese institute of engineers, Vol. 27, pp. 597-609, 2004.
[14] D. L. Young, Y. F. Wang and T. I. Eldho, Solution of the advection-diffusion equation using the Eulerian-Lagrangian boundary element method, Engineering analysis with boundary elements, Vol. 24, pp. 449-457, 2000.
[15] D. L. Young, C. M. Fan, C. C. Tsai,, C. W. Chen and K. Murugesan, Eulerian-Lagrangian method of fundamental solutions for multi-dimensional advection-diffusion equation, International mathematics forum, Vol. 1, pp. 687-706, 2006.
[16] M. H. Gou and D. L. Young, Application of the method of fundamental solutions to solve advection-diffusion equations, Pacific Congress on Marine Science and Technology, Changhua, Taiwan, 2005.
[17] D. L. Young, C. M. Fan, S. P. Hu and S. N. Atluri, The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations, Engineering analysis with boundary elements, Vol. 32, pp. 395-412, 2008.
[18] C. M. Fan, The method of fundamental solutions for advection-diffusion, Burger’s and Navier-Stokes equations, Ph. D dissertation, National Taiwan University, Taiwan, 2005.
[19] S. J. Farlow, Partial differential equations for scientists and engineers, Dover publications, 1993.
[20] J. L. Davis, Mathematics of wave propagation, Princeton University, 2000.
[21] P. Popovich, W. A. Cooper and L. Villard, A full-wave solver of the Maxwell’s equations in 3D cold plasmas, Computer physics communications, Vol. 175, pp. 250-263, 2006.
[22] H. Wang and Q. H. Qin, A meshless method for generalized linear or nonlinear Poisson-type problems, Engineering analysis with boundary elements, Vol. 30, pp. 515-521, 2006.
[23] C. S. Chen, C. A. Brebbia and H. Power, Dual reciprocity method using compactly supported radial basis functions, Communications in numerical methods in engineering, Vol. 15, pp. 137-150, 1999.
[24] F. H. Harlow and J. E. Welsh, Numerical calculation to time dependent viscous incompressible flow with free surface, The physics of fluids, Vol. 8, pp. 2182-2189, 1965.
[25] S. Chen, D. B. Johnson, P. E. Raad and D. Fadda, The surface marker and micro cell method, International journal for numerical methods in fluids, Vol. 25, pp. 749-778, 1997.
[26] C. W. Hirt and B. D. Nicholls, Volume of fluid (VOF) method for dynamics of free boundaries, Journal of computational physics, Vol. 39, pp. 201-221, 1981.
[27] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of computational physics, Vol. 114, pp. 146-159, 1994.
[28] T. Yabe and F. Xiao, Description of complex and sharp interface with fixed grids in incompressible and compressible fluid, Computers and mathematics with applications, Vol. 29, pp. 15-25, 1995.
[29] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. A. Rawahi, W. Tauber, J. Han, S. Nas and Y. J. Jan, A front-tracking method for the computations of multiphase flow, Journal of computational physics, Vol. 169, pp. 708-759, 2001.
[30] D. C. Lo and D. L. Young, Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation, Journal of computational physics, Vol. 195, pp. 175-201, 2004.
[31] A. Harten, High resolution scheme for hyperbolic conservation law, Journal of computational physics, Vol. 49, pp. 357-393, 1983.
[32] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on numerical analysis, Vol. 21, pp. 995-1011, 1984.
[33] S. Gottlieb and C. W. Shu, Toltal variation diminishing Runge-Kutta schemes, Mathematics of computation, Vol. 67, pp. 73-85, 1998.
[34] A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes, Journal of computational physics, Vol. 71, pp. 231-303, 1987.
[35] X. D. Liu and S. Osher, Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, Journal of computational physics, Vol. 142, pp. 304-330, 1998.
[36] G. J. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, Journal of computational physics, Vol. 126, pp. 202-228, 1996.
[37] S. Serna and A. Marquina, Power ENO methods: a fifth-order accurate weighted power ENO method, Journal of computational physics, Vol. 194, pp. 632-658, 2004.
[38] O. C. Zienkiewicz, P. Nithiarasu, R. Codina, M. Vázquez and P. Ortiz, The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems, International journal for numerical methods in fluids, Vol. 31, pp. 359-392, 1999.
[39] D. R. Lynch and W. G. Gray, Analytic solution for computer flow model testing, Journal of hydraulic division, Vol. 104, pp. 1409-1428, 1978.
[40] G. B. Whitham, Linear and nonlinear wave, John Wiley & Sons, pp. 214-215, 1974.
[41] A. M. Wazwaz, A reliable technique for solving the wave equation in an infinite one-dimensional medium, Applied mathematics and computation, Vol. 92, pp. 1-7, 1998.
[42] S. Callsen, O. V. Estorff and O. Zaleski, Direct and indirect approach of a desingularized boundary element formulation for acoustical problems, CMES-Computer modeling in engineering & sciences, Vol. 6, pp. 421-429, 2004.
[43] D. L. Young and J. W. Ruan, Method of fundamental solutions for scattering problems of electromagnetic waves, CMES-Computer modeling in engineering & sciences, Vol. 7, pp. 223-232, 2005.
[44] A. Iske and M. Käser, Two-phase flow simulation by AMMoC, an adaptive meshfree method of characteristics, CMES-Computer modeling in engineering & sciences, Vol. 7, pp. 133-148, 2005.
[45] M. H. Gu, D. L. Young and C. M. Fan, The meshless method for one-dimensional hyperbolic equation, Journal of aeronautics astronautics and aviation, Series A, Vol. 40, pp. 63-72, 2008.
[46] H. C. Kim and J. P. Verboncoeur, Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab, Computer physics communications, Vol. 117, pp.118-121, 2007.
[47] M. A. Golberg, A. S. Muleshkov, C. S. Chen and A. H. D. Cheng, Polynomial particular solutions for certain partial differential operators, Numerical methods for partial differential equations, Vol. 19, pp. 112-133, 2003.
[48] A. S. Muleshkov and M. A. Golberg, Particular solutions of the multi-Helmholtz-type equation, Engineering analysis with boundary elements, Vol. 31, pp. 624-630, 2007.
[49] M. Tanaka and W. Chen, Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time, Computer methods in applied mechanics and engineering, Vol. 190, pp. 2331-2347, 2001.
[50] J. A. M. Carrer and W. J. Mansur, Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation, Computational mechanics, Vol. 34, pp. 387-399, 2004.
[51] C. S. Chen, C. M. Fan and J. Monroe, The method of fundamental solutions for solving elliptic partial differential equations with variable coefficients, The method of fundamental solutions - a meshless method, Dynmics Publisher, pp. 75-105, 2008.
[52] H. A. Cho, M. A. Golberg, A. S. Muleshkov and X. Li, Trefftz methods for time dependent partial differential equations, CMC-Computers materials & continua, Vol. 1, pp. 1-37, 2004.
[53] H. Wang, Q. H. Qin and Y. L. Kang, A meshless model for transient heat conduction in functionally graded materials, Computational mechanics, Vol. 38, pp. 51-60, 2006.
[54] A. Soroushian and J. Farjoodi, A unified starting procedure for the Houbolt method, Communications in numerical methods in engineering, Vol. 24, pp. 1-13, 2008.
[55] M. F. Tome and S. McKee, GENSMAC: A computational marker and cell method for free surface flow in general domains, Journal of computational physics, Vol. 110, pp. 171-186, 1994.
[56] W. Tsai, and D. K. P. Yue, Computation of nonlinear free-surface flows, Annual review of fluid mechanics, Vol. 28, pp. 249-278, 1996.
[57] J. H. Jeong and D. Y. Yang, Finite element analysis of transient fluid flow with free surface using VOF (volume-of-fluid) method and adaptive grid, International journal for numerical methods in fluids, Vol. 26, pp. 1127-1154, 1998.
[58] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of computational physics, Vol. 152, pp. 423-456, 1999.
[59] D. J. E. Harvie and D. F. Fletcher, A new volume of fluid advection algorithm: the stream scheme, Journal of computational physics, Vol. 162, pp. 1-32, 2000.
[60] Y. J. Jan, A cell-by-cell thermally driven mushy cell tracking algorithm for phase-change problems part I: Concept for tracking the moving front without natural convection, Computational mechanics, Vol. 40, pp. 201-216, 2007.
[61] Y. J. Jan, A cell-by-cell thermally driven mushy cell tracking algorithm for phase-change problems part II: Phase-change with natural convection, Computational mechanics, Vol. 40, pp. 217-231, 2007.
[62] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell and M. L. Welcome, An adaptive level set approach for incompressible two-phase flows, Journal of computational physics, Vol. 148, pp. 81-124, 1999.
[63] M. Sussman and E. G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of computational physics, Vol. 162, pp. 301-337, 2000.
[64] D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of computational physics, Vol. 183, pp. 83-116, 2002.
[65] T. Yabe, Y. Ogata, K. Takizawa, T. Kawai, A. Segawa and K. Sakurai, The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid and gas, Journal of computational and applied mathematics, Vol. 149, pp. 267-277, 2002.
[66] C. H. Hu and M. Kashiwagi, A CIP-based method for numerical simulations of violent free-surface flows, Journal of marine science and technology, Vol. 9, pp. 143-157, 2004.
[67] T. Yabe, K. Takizawa, M. Chino, M. Imai and C. C. Chu, Challenge of CIP as a universal solver for solid liquid and gas, International journal for numerical methods in fluids, Vol. 47, pp. 655-676, 2005.
[68] S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, Vol. 100, pp. 25-37, 1992.
[69] S. Popinet and S. Zaleski, A front-tracking algorithm for accurate representation of surface tension, International journal for numerical methods in fluids, Vol. 30, pp. 775-793, 1999.
[70] J. P. Morris, Simulating surface tension with smoothed particle hydrodynamics, International journal for numerical methods in fluids, Vol. 33, pp. 333-353, 2000.
[71] A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of computational physics, Vol. 191, pp. 448-475, 2003.
[72] B. Ramaswamy and M. Kawahara, Arbitrary Lagrangian-Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow, International journal for numerical methods in fluids, Vol. 7, pp. 1053 -1075, 1987.
[73] I. Robertson and S. Sherwin, Free-surface flow simulation using hp/spectral elements, Journal of computational physics, Vol. 155, pp. 26-53, 1999.
[74] H. Braess and P. Wriggers, Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Computer methods in applied mechanics and engineering, Vol. 190, pp. 95-109, 2000.
[75] M. Souli and J. P. Zolesio, Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics, Computer methods in applied mechanics and engineering, Vol. 191, pp. 451-466, 2001.
[76] D. L. Young, Q. H. Lin and K. Murugesan, Two-dimensional simulation of a thermally stratified reservoir with high sediment-laden inflow, Journal of hydraulic research, Vol. 43, pp. 351-365, 2005.
[77] D. C. Lo and D. L. Young, Numerical simulation of solitary waves using velocity-vorticity formulation of Navier-Stokes equations, Journal of Engineering Mechanics-ASCE, Vol. 132, pp. 211-219, 2006.
[78] P. Nithiarasu, An arbitrary Lagrangian-Eulerian (ALE) formulation for free surface flow using the characteristic-based split (CBS) scheme, International journal for numerical methods in fluids, Vol. 48, pp. 1415-1428, 2005.
[79] M. K. Kadalbajoo and R. Kumar, A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems, Applied mathematics and computation, Vol. 175, pp. 1556-1573, 2006.
[80] C. E. Castro and E.F. Toro, Solvers for the high-order Riemann problem for hyperbolic balance laws, Journal of computational physics, Vol. 227, pp. 2481-2513, 2008.
[81] R. Borges, M. Carmona, B. Costa and W. S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of computational physics, Vol. 227, pp. 3191-3211, 2008.
[82] P. Nithiarasu, R. Codina and O. C. Zienkiewicz, The characteristic-based split (CBS) scheme - a unified approach to fluid dynamics, International journal for numerical methods in engineering, Vol. 66, pp. 1514-1546, 2006.
[83] J. H. Ferziger and M. Peric, Computational method for fluid dynamics, Springer, pp. 138-140, 2002.
[84] U. Ghia, K. N. Ghia and C. T. Shin, High-Re solution for incompressible flow using Navier-Stokes equations and a multigrid method, Journal of computational physics, Vol. 48, pp. 387-411, 1982.
[85] R. H. Kuo, A level set technique applied to free surface flow, Master thesis, Feng-Chia University, Taiwan, 2002.
[86] J. C. Martin and W. J. Moyce, Part IV. an experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical transactions of the royal society of London. Series A, Mathematical and Physical Sciences, Vol. 244, pp. 312-324, 1952.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41815-
dc.description.abstract本文採用基本解法並與其他數值技術結合發展成無網格數值模型,用以求解波動方程式與自由液面問題。本文所使用的尤拉-拉格朗日基本解法是結合尤拉-拉格朗日法與基本解法,用來求解對流-擴散方程式。並採用極小的擴散係數使獲得的數值解可以近似於對流方程式之解。其中,尤拉-拉格朗日法被用來描述對流現象,而基本解法則用來求取特徵線上的方程式數值解。尤拉-拉格朗日基本解法是一種真正的無網格數值方法,此方法可以將物理值在尤拉與拉格郎日座標中任意轉換。在本文中,雙曲線型方程式與方程式系統被用來證明尤拉-拉格朗日基本解法的求解能力。雖然基本解法可以輕易的求解對流-擴散方程式,但是卻難以用來直接求解波動方程式。原因在於波動方程式的基本解總是存在著脈衝函數(或是階梯函數)。所以達朗伯特格式在本文中被用來避免直接處理脈衝函數(或是階梯函數),並結合尤拉-拉格朗日基本解法發展出一維波動模型。本文中所提出的一維波動模型難以處理複雜的邊界問題,且不易延伸至高維度空間問題。因此,本文引進了特解與齊性解的概念,發展出高維度空間之波動模型。其中,特解由基底函數負責描述,齊性解則由拉普拉斯方程式的基本解描述之。數值結果皆與解析解或數值解比對結果良好,證明本文所提出的無網格數值方法對於波動問題具有高度精度、一致性與效率。而更進一步的,本文使用尤拉-拉格朗日基本解法結合有限元素法,發展出自由液面模型。其本文所發展的自由液面模式之數值結果與其他數值模式和實驗數據比較皆能吻合。本文採用無網格數值方法成功求解對流、雙曲線型系統、自由液面與波動問題。從這些數值試驗案例,我們可以確信本文所提出的無網格數值方法一個有發展潛力的數值模擬工具。zh_TW
dc.description.abstractIn this dissertation, the method of the fundamental solutions (MFS) combined with the other techniques is adopted for developing the wave equation solver. The original Eulerian-Lagrangian method of fundamental solutions (ELMFS) for solving the advection-diffusion equation is based on the Eulerian-Lagrangian method (ELM) and the MFS, respectively. The ELMFS can approximate the solution of the pure advection equation with the extremely small diffusion coefficient. The ELM is applied to describe the advection phenomena and the numerical solutions along characteristic path are obtained by the MFS. The proposed ELMFS is the purely meshless method which can easily transport the solutions between the Eulerian and Lagrangian coordinates. The problems of hyperbolic equation and system are selected to prove the ability of the proposed ELMFS. Although the MFS can easily handle the advection-diffusion problems, it is difficult to solve the wave equation directly, because the fundamental solution of wave equation always accompanies with the Dirac delta function (or Heaviside step function). The D’Alembert formulation is used to avoid the problems of the Dirac delta function (or Heaviside step function). The one-dimensional wave model based on the D’Alembert formula and ELMFS is proposed in this dissertation. However, the proposed ELMFS wave model can not deal with the complex boundary conditions and difficult to extend for solving the multi-dimensional problems. Therefore, the concepts of the particular solution and homogeneous solution are used to develop the multi-dimensional wave model. In the proposed multi-dimensional wave model, the describing works of the particular solution is based on the radial basis functions and the fundamental solution of Laplace equation is used to describe the homogeneous solution. There are several examples of the advection, hyperbolic system and wave problems discussed in this present work. The numerical simulations of examples are compared well with the analytical solution or other numerical solutions. In the numerical tests, we demonstrate the high accuracy, consistency and efficiency of the proposed meshless numerical methods for wave problems. Finally the ELMFS is used to combine with the finite element method for dealing the free surface problem. The numerical results of the proposed free surface model are compared well with the other numerical model and experimental data. From the numerical comparisons, it is convinced that the proposed hyperbolic models are the promising meshless numerical tools for engineering and science applications.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:32:50Z (GMT). No. of bitstreams: 1
ntu-97-D92521018-1.pdf: 7973047 bytes, checksum: 7024569c11f747eac6e7459d248ff225 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要 i
Abstract iii
The table list v
The figure list vi
Chapter 1 Introductions 1
1.1 The mesh dependent and meshless numerical methods 2
1.2 The method of fundamental solutions 4
1.3 The wave problem 6
1.4 The free surface problems 7
1.5 The objects of dissertation 10
1.6 The organization of dissertation 10
Chapter 2 The Eulerian-Lagrangian method of fundamental solutions for the hyperbolic system problem 12
2.1 Introduction 13
2.2 The governing equation 14
2.3 The Eulerian-Lagrangian method of fundamental solutions 16
2.4 The numerical examples 19
2.5 Conclusions 23
Chapter 3 The Eulerian-Lagrangian method of fundamental solutions model for the one-dimensional wave equation 32
3.1 Introduction 33
3.2 The governing equation 36
3.3 The one-dimensional wave model 36
3.4 The numerical examples 39
3.5 Conclusions 45
Chapter 4 The method of fundamental solutions for the wave equation 58
4.1 Introduction 59
4.2 The governing equation 62
4.3 The numerical methods 63
4.4 The numerical experiments 67
4.5 Conclusions 77
Chapter 5 The Eulerian-Lagrangian method of fundamental solutions for the free surface problems 94
5.1 Introduction 95
5.2 The governing equations 98
5.3 The numerical methods 99
5.4 The numerical examples 103
5.5 Conclusions 107
Chapter 6 Conclusions and suggestions 123
6.1 The conclusions 124
6.2 The scope for further research 127
References 130
The personal information of author 143
dc.language.isoen
dc.subject基本解法zh_TW
dc.subject尤拉-拉格朗日基本解法zh_TW
dc.subject自由液面zh_TW
dc.subject達朗伯特格式zh_TW
dc.subject波動問題zh_TW
dc.subject特解法zh_TW
dc.subjectEulerian-Lagrangian method of fundamental solutionsen
dc.subjectmethod of fundamental solutionsen
dc.subjectmethod of particular solutionsen
dc.subjectwave equationen
dc.subjectfree surfaceen
dc.title以基本解法求解波動方程式與自由液面問題zh_TW
dc.titleThe Method of Fundamental Solutions for Wave Equations and Free Surface Problemsen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee廖清標,詹益正,卡艾瑋,蔡加正,陳桂鴻,邱家麟
dc.subject.keyword尤拉-拉格朗日基本解法,自由液面,達朗伯特格式,波動問題,特解法,基本解法,zh_TW
dc.subject.keywordEulerian-Lagrangian method of fundamental solutions,free surface,wave equation,method of particular solutions,method of fundamental solutions,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2009-01-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
7.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved