Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊德良(Der-Liang Young)
dc.contributor.authorLi-Hsuan Shenen
dc.contributor.author沈立軒zh_TW
dc.date.accessioned2021-06-15T00:32:47Z-
dc.date.available2010-01-20
dc.date.copyright2009-01-20
dc.date.issued2008
dc.date.submitted2009-01-14
dc.identifier.citation1. Bellman RE, Casti J (1971) Differential quadrature and long-term integration. J. Math. Anal. Appl., Vol. 33, pp. 135-238.
2. Bellman RE, Kashef BG. Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Cornput. Phys., Vol. 10, pp. 40-52.
3. Bellman RE, Kashef BG, Vasudevan R (1974) The inverse problem of estimating heart parameters from cardiograms. Math. Biosci., Vo1 19, pp. 321-230.
4. Bert CW. Jang SK. Striz AG (1988) Two new approximate methods for analyzing free vibration of structural components. AIAA J., Vol. 76, pp. 612-618.
5. Bert CW, Wang X, Striz AG (1993) Differential quadrature for static and free vibration analyses of anisotropic plates. Int. J. Solids Struct., Vol. 30, Iss. 13, pp. 1737- 1744.
6. Batchelor G. K. (1967) An introduction to fluid dynamics. Cambridge, UK: Cambridge University Press.
7. Civan F. Sliepcevich CM (1983) Application of differential quadrature to transport processes. J. Math. Anal. Appl., Vol. 93, pp. 206-221.
8. Civan F, Sliepcevich CM (1984) Differential quadrature for multi-dimensional problems. J. Math. Ana. Appl., Vol. 101, pp. 423-443.
9. Chen C.N. (1995) Solution of beam on elastic foundation by DQEM. J. Eng. Mech-Asce, Vol. 124, ISS. 11, pp. 1391-1384.
10. Chen C.N. (1997) The two-dimensional frame model of the differential quadrature element method. Comput. Struct., Vol. 62, Iss. 3, pp. 555-571.
11. Chen C.N. (2000) Solution of anisotropic nonuniform plate problems by the differential quadrature finite difference method. Comput. Mech., Vol. 27, pp. 273-28.
12. Chen C.N. (2001) Differential quadrature finite difference method for structural mechanics problems. Commun. Numer. Meth. Eng., Vol. 17, pp. 423-441.
13. Chen Y.H., S.C. Yang and J.Y. Yang (1999) Implicit weighted essentially non-oscillatory schemes for the incompressible Navier–Stokes equations. Int. J. of Numer. Meth. Fluids, Vol. 31, pp. 747-765.
14. Chan C.T. and K. Anastasiou (1999) Solution of incompressible flows with or without a free surface using the finite volume method on unstructured triangular meshes. Int. J. of Numer. Meth. Fluids, Vol. 29, pp. 35-57.
15. Chen, J.T., L.W. Liu and H.K. Hong (2003) Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem, Proceedings of the Royal Society A, Vol. 459, pp. 1891-1924.
16. Chang C.T., C.S. Tsai and T.T. Lin (1993) The modified differential quadratures and their applications. Chem. Eng. Commun., Vol. 123, pp. 135-164.
17. Chorin A.J. (1968) Numerical solution of the Navier-Stokes equations, Math. Comput., Vol. 22, pp. 745-762.
18. Farsa J, A.R. Kukreti and C.W. Bert (1993a) Fundamental-frequency analysis of laminated rectangular-plates by differential quadrature method. Int. J. Numer. Meth. Eng., Vol. 36, Iss. 14, pp. 2341-2356.
19. Farsa J, A.R. Kukreti and C.W. Ben (1993b) Fundamental-frequency analysis of single specially orthotropic, generally orthotropic and anisotropic rectangular layered plates by the differential quadrature method. Comput. Struct., Vol. 46, Iss. 3, pp. 465-477.
20. Franke R. (1982) Scattered data interpolation: tests of some methods,” Math. Comput., Vol. 38, pp. 181-199.
21. Franke R., W. Rodi and B. Schönung, (1990) Numerical calculation of laminar vortex shedding flow past cylinders. J. Wind Eng. Ind. Aerodynamics, Vol. 35, pp. 237-257.
22. Farrant T., M. Tan, W.G. Price (2000) A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements. J. Fluids Struct., Vol. 14, pp. 375-402.
23. Gutierrez R.H. and P.A.A. Laura (1994) Solution of the Helmholtz-equation in a parallelogrammic domain with mixed boundary-conditions using the differential quadrature method. J. Sound Vib., Vol. 176, Iss. 7, pp. 169-271.
24. Gutierrez RH, P.A.A. Laura and R.E. Rossi (1994) The method of differential quadrature and its application to the approximate solution of ocean engineering problems. Ocean Eng., Val 21, Iss. 1, pp. 57-66.
25. Gutierrez R.H., P.A.A. Laura, H.C. Sanzi and G. Elvira (1995) Vibrations of a rectangular plate of non-uniform thickness partially embedded in a winkler medium. J. Sound Vib., Vol. 185, Iss. 5, pp. 910-914.
26. Gutierrez R.H. and P.A.A. Laura (1999) Use of the differential quadrature method when dealing with transverse vibrations of a rectangular plate subjected to a non-uniform stress distribution field. J. Sound Vib., Vol. 220, Iss. 4, pp. 765-769.
27. Ghia U., K.N. Ghia, C.T. Shin (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., Vol. 48, pp. 387-411.
28. Ju′arez, H., R. Scott, R. Metcalfe and B. Bagheri (2000). Direct simulation of freely rotating cylinders in viscous flows by high-order finite element methods. Comput. Fluids, Vol. 29, pp. 547-582.
29. Kukreti A.R., J. Farsa and C.W. Bert (1992) Fundamental-frequency of tapered plates by differential quadrature. J. Eng. Mech., Vol. 118, Iss. 6, pp. 1221-1238.
30. Kukreti A.R., J. Farsa and C.W. Bert (1996) Differential quadrature and Rayleigh-Ritz methods to determine the fundamental frequencies of simply supported rectangular plates with linearly varying thickness. J. Sound Vib., Vol. 189, ISS. 1, pp. 103-122.
31. Kansa E.J. (1990) Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics - I. Surface approximations and partial derivative estimates, Comput. Math. Appl., Vol. 19, , pp. 127-145.
32. Laura P.A.A. and R.H. Gutierrez (1993) Analysis of vibrating Timoshenko beams using the method of differential quadrature. Shock Vib., Vol. 1, pp. 89-93.
33. Laura P.A.A. and R.H. Gutierrez (1995) Analysis of vibrating circular plates of nonuniform thickness by the method of differential quadrature. Ocean Eng., Vol. 22, Iss. 1, pp. 97-100.
34. Lee T. S., G. S. Hu and C. Shu (2002) Application of GDQ method for the study of natural convection in horizontal eccentric annuli, Numer. Heat Trans., Part A, Vol. 41, pp. 803-815.
35. Lo D.C., D.L. Young and K. Murugesan (2005) GDQ method for natural convection in a square cavity using velocity–vorticity formulation, Numer. Heat Trans., Part B, Vol. 47, pp. 321-341.
36. Lo D.C., D.L. Young and K. Murugesan (2005) GDQ method for natural convection in a cubic cavity using velocity–vorticity formulation, Numer. Heat Trans., Part B, Vol. 48, pp. 363-386.
37. Lo D.C., D.L. Young, K. Murugesan, C.C. Tsai, M.H. Gou (2007) Velocity-vorticity formulation for 3D natural convection in an inclined cavity by DQ method, Int. J. of Heat and Mass Trans., Vol. 50, Vol. 479-491.
38. Liew K.M., Y.Q. Huang and J. N. Reddy (2002) A hybrid moving least squares and differential quadrature (MLSDQ) meshfree method, Int. J. Comput. Eng. Sci., Vol. 3, No. 1, pp. 1-12.
39. Lecointe Y. and J. Piquet, (1984) On the use of several compact methods for the study of unsteady incompressible viscous flow around a circular cylinder. Computer & Fluids, Vol. 12, pp. 255-280.
40. Mingle JO (1977) The method of differential quadrature for transient nonlinear diffusion. J. Math. Anal. Appl, Vol. 60, pp. 559-569.
41. Malik M. and C.W. Bert (1995) Differential quadrature analysis of free-vibration of symmetrical cross-ply laminates with shear deformation and rotatory inertia. Shock Vib., Vol. 2, Iss. 4. pp. 321-338.
42. Mirfakhraei P. and D. Redekop (1998) Buckling of circular cylindrical shells by the differential quadrature method. Int. J. Pressure Vessels Piping, Vol. 75, ESS 4, pp. 347-353.
43. Moradi S and F. Taheri (1998) Differential quadrature approach for delamination buckling analysis of composites with shear deformation. AIAA J., Vol. 36, Iss. 10, pp. 1865-1873.
44. Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992) Numerical recipes in FORTRAN. 2nd ed, Cambridge, Ch. 2, pp. 51-62.
45. Pelletier D., F. Ilinca and E. Turgeon (1997) An adaptive finite element method for forced convection”, Int. J. of Numer. Meth. Fluids, Vol. 25, pp. 803-823.
46. Quan J. R. and Chang, C. T. (1989a) New insights in solving distributed system equations by the quadrature methods - I, Comput. Chem. Eng., 13, 779-788.
47. Quan J. R. and Chang, C. T. (1989b) New insights in solving distributed system equations by the quadrature methods - II, Comput. Chem. Eng., 13, 1017-1024.
48. Roshko A. (1954) On the development of turbulent wakes from vortex streets. NACA Report, pp. 1191.
49. Sherbourne A.N. and M.D. Pandey (1991) Differential quadrature method in the buckling analysis of beams and composite plates. Comput. Struct., Vol. 40, Iss. 4, pp. 903-913.
50. Striz A.G., S.K. Jang and C.W. Bert (1988) Nonlinear bending analysis of thin circular plates by differential quadrature. Thin Wall Struct., Vol. 6, Iss. 1, pp. 51-62.
51. Shu C. and B.E Richards (1990) High resolution of natural convection in a square cavity by generalized differential quadrature. Proc of 3rd Conf on Adv in Numer Methods in Eng: Theory and Appl., Swansea, UK, Vol. 7, pp. 978-985.
52. Shu C. (1991) Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation. PhD thesis, Univ. of Glasgow, UK.
53. Shu C. and B.E. Richards (1992a) Application of generalized differential quadrature to solve 2-dimensional incompressible Navier-Stokes equations. Int. J. for Numer. Methods in Fluids, Vol. 15, Iss. 7, pp. 791-795.
54. Shu C. and B.E. Richards (1992b) Parallel simulation of incompressible viscous flows by generalized differential quadrature. Comput. Syst. Eng., Vol. 3, pp. 271-281.
55. Shu C., B.C. Khoo and K.S. Yeo (1994) Numerical solutions of incompressible Navier-Stokes equations by generalized differential quadrature. Finite Elem. Anal. Design, Vol 18, pp. 83-97.
56. Shu C., Y.T. Chew, B.C. Khoo and K.S. Yeo (1995) Application of GDQ scheme to simulate incompressible viscous flows around complex geometries. Mech. Res. Commun., Vol. 22, pp. 319-325.
57. Shu C., Y.T. Chew and B.E. Richards (1995) Generalized differential and integral quadrature and their application to solve boundary-layer equations. Int. J. Numer. Methods in Fluid, Vol. 21, pp. 723-733.
58. Shu C., B.C. Khoo, Y.T. Chew and K.S. Yea (1996) Numerical studies of unsteady boundary layer flows past an impulsively started circular cylinder by GDQ and GIQ approaches. Comput. Meth. Appl. Mech. Eng., Vol. 135, Iss. 3-4, pp. 29-241.
59. Shu C., Y.T. Chew, B.C. Khoo and K.S. Yeo (1996) Solutions of three-dimensional boundary layer equations by global methods of generalized differential-integral quadrature. Int. J. Numer. Method Heat and Fluid Flow, Vol. 6, pp. 61-75.
60. Shu C., Y.T. Chew and Y. Liu (1997) An efficient approach for numerical simulation of flows in Czochralski crystal growth. J. Cryst. Growth, Vol. 181, pp. 427-436.
61. Shu C., Y.T. Chew and Y. Liu (1998) Different interface approximations in multi-domain GDQ simulation of Czochralski bulk flows. Int. J. Numer. Method Heat and Fluid Flow, Vol. 8, pp. 424-444.
62. Shu C., B.C. Khoo, K.S. Yeo and Y.T. Chew (1994) Application of GDQ scheme to simulate natural convection in a square cavity. Int. Commun. Heat Mass Trans., Vol. 21, ISS. 6, pp. 809-817.
63. Shu C. and H. Xue (1998) Comparison of two approaches for implementing stream function boundary conditions in DQ simulation of natural convection in a square cavity. Int. J. Heat and Fluid Flow, Vol. 19, pp. 59-68.
64. Shu C., (1999) Application of differential quadrature method to simulate natural convection in a concentric annulus. Int. J. of Numer. Meth. Fluids, Val 30, pp. 977-993.
65. Shu C. and Q. Yao (2000) An efficient approach to simulate natural convection in arbitrarily eccentric annuli by vorticity-stream function formulation, Numer. Heat Trans., Part A, Vol. 38, pp. 739-756.
66. Shu C. (2000) Differential quadrature and its application in engineering, New York, Springer, Ch. 2, pp. 29-37.
67. Shu C., Q. Yao, K. S. Yeo and Y. D. Zhu (2002) Numerical analysis of flow and thermal fields in arbitrary eccentric annulus by differential quadrature method, Int. J. of Heat and Mass Trans., Vol. 38, pp. 597-608.
68. Shu C., H. Ding, and K.S. Yeo (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., Vol. 192, pp. 941–954.
69. Shu C., L Wang and Y.T. Chew (2003) Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ Method, Int. J. of Numer. Meth. Fluids, Vol. 43, pp. 345-368.
70. Shen L.H., D.L. Young, D.C. Lo and C.P. Sun (2008) Local differential quadrature method for 2D flow and forced convection problems in irregular domains, Numer. Heat Trans., Part B, Vol. 55, Iss. 2, pp. 1-19.
71. Shen L.H. and D.L. Young (2007) Local differential quadrature method for elliptic equations in irregular domains, PACON 2007, Honolulu, Hawaii.
72. Schreiber R. and H.B. Keller (1983) Driven cavity flows by efficient numerical techniques, J. Comput. Phys., Vol. 49, pp. 310-333.
73. Soong C.C. and W.C. Hsueh (1993) Mixed convection in a suddenly-expended channel with effects of cold fluid injection, Int. J. of Heat and Mass Trans., Vol. 36, pp. 1477-1484.
74. Shiels D. and A. Leonard (2001) Investigation of a drag reduction on a circular cylinder in rotationally oscillation. J. of Fluid Mech., Vol. 431, pp. 297-322.
75. Wille, R. (1960) Kámán vortex streets. Advan. Appl. Mech., Vol. 6, pp. 273-287.
76. Williamson C.H.K. (1996) Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, Vol. 28, pp. 477-539.
77. Young D.L., S.C. Jane, C.Y. Lin, C.L. Chiu, and K.C. Chen (2004) Solutions of 2D and 3D Stokes laws using multiquadrics method, Eng. Anal. with Bound. Elem., Vol. 28, pp. 1233-1243.
78. Young D.L., T.K. Wong and C.S. Chen (2005) Solution of Maxwell’s Equations Using the MQ Methods, Computers, Materials, & Continua, Vol. 2, pp. 267-276.
79. Young, D.L., C.W. Chen, C.M. Fan and C.C. Tsai (2006) The method of fundamental solutions with eigenfunction expansion method for nonhomogeneous diffusion equations, Numer. Meth. for PDE, Vol. 25, pp. 1173-1196.
80. Zhang Q.D., Khoo BC, Yeo KS (1997) A numerical study of the effect of free surface and water depth on the stability of wakes: use of GDQ formulation. Int. J. Numer. Methods in Fluid, Vol. 24, pp. 1079-1090.
81. Zong Z. and K.Y. Lam (2002) A localized differential quadrature (LDQ) method and its application to the 2D wave equation, Comput. Mech., Vol. 29, pp. 382–391.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41814-
dc.description.abstract本研究提出一個改良的區域微分積分(local differential quadrature, LDQ)數值模式,以求解不規則計算域問題並應用於流場及熱傳播問題的模擬。此處提出的區域微分積分模式乃改良自微分積分法,是一個具備高階精確度及良好計算效率的數值方法。然而傳統的微分積分法受限於計算矩陣非常條件不良(ill-conditioned)、對計算網格型式過於限制以及不易處理不規則邊界等缺點,讓這個方法無法廣泛推廣於數值模擬的領域。本研究利用區域化的數值公式及網格截切的特殊技術,順利的解決了以上幾個微分積分法的重大缺陷。在求解二維及三維的不規則幾何形狀計算域的卜易松及赫姆霍茲等偏微分方程式的數值測試中,可以觀察到此改良過的數值模型成功的保留了傳統微分積分法的高階精確度,並加強了良好計算效率的優點。在求解許多經典的二維及三維計算流體力學(computational fluid dynamics, CFD)問題中,證實了本研究所提出的區域微分積分方法的良好計算效能。例如二維及三維的矩形穴室流(cavity flow)問題,流經圓柱的流場計算及後向階梯(backward facing step)計算域的強制對流流場和溫度場的數值分析。本數值模式在這個研究中,更被成功地推廣應用於二維及三維流體力學及熱傳播在不規則計算域中的模擬。例如求解流經加熱波浪狀底床的二維渠流流場及溫度場問題,還有內嵌球形障礙物的三維穴室流場模擬。另外,與本數值模式有關的無網格的加密計算技術,以及極具發展潛力的移動邊界處理技術,也都在這個研究中被提出。藉由一些數值試驗,證實本數值模式可優異的用來解決需利用無網格加密計算技術及移動邊界技術之流場與熱流場之問題。zh_TW
dc.description.abstractThis study proposes a local differential quadrature (LDQ) algorithm to handle the irregular domain problems and applies it to solve the flow and heat transfer problems. The proposed LDQ method is developed from the classic differential quadrature (DQ) method, a numerical method with high order accuracy and economic efficiency. However the ill-conditioned matrix, sensitive computational mesh and restricted geometry have limited the extensive applications of the conventional DQ method. This study successfully overcomes those above mentioned disadvantages by adopting the localized numerical schemes and a grid cutting technique. The numerical tests of solving the two- and three-dimensional Poisson and Helmholtz equations have verified that the proposed LDQ model maintains the high order accuracy and enhances the economical efficiency of the DQ method. The present model is also extended to apply to the two- and three-dimensional fluid mechanics and heat transfer problems. The good performance of the LDQ method is demonstrated by solving many classical computational fluid dynamics (CFD) problems such as the two- and three-dimensional lid-driven cavity flows, flow around fixed circular cylinder and forced convection problem in backward facing step channel. The applications of two-dimensional channel flow over heating ripple beds and three-dimensional cavity flows with a fixed sphere have also revealed the excellent capability of the proposed LDQ for simulating the flow and heat transfer problems with irregular domains. This investigation also undertakes the techniques of the refining process of meshless computational nodes, and the treatment of moving boundaries related to the proposed model. The proposed LDQ algorithm has also demonstrated the excellent performance to deal with the meshless refining process and moving boundary problems in irregular domains by some numerical experiments.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:32:47Z (GMT). No. of bitstreams: 1
ntu-97-D93521014-1.pdf: 12939178 bytes, checksum: 79e6675a3d81233b8f9fbe65b8d600e5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of Contents
摘要 1
Abstract 2
Table of Contents 3
Table List 6
Figure List 7
CHAPTER 1
Introduction
1.1 Differential quadrature method 11
1.2 Local differential quadrature method 14
1.3 Meshless local differential quadrature method 15
1.4 Purposes of the dissertation 17
1.5 Organization of the dissertation 18
CHAPTER 2
The Local Differential Quadrature Method for Irregular domain Problems
2.1 Mathematical concept of local differential quadrature method 23
2.1.1 Fundamentals of differential quadrature method 23
2.1.2 Localization schemes 36
2.1.3 Error analysis 41
2.2 Treatments of irregular boundaries 44
2.2.1 Dirichlet type boundary conditions 44
2.2.2 Differential type boundary conditions 45
2.3 Numerical test for 2D irregular domain problems 53
2.3.1 Solving Poisson equation in circular domain 53
2.3.2 Solving Poisson equation in U-shaped domain 58
2.3.3 Solving eigen-value problem in Oval of Cassini domain 61
2.4 Meshless local differential quadrature method 67
2.4.1 Local multi-quadrics differential quadrature method 67
2.4.2 Gaussian function based meshless local differential quadrature method 70
2.5 Adopted iterative solver 73
CHAPTER 3
Governing Equations and the Local Differential Quadrature Schemes for Solving the Flow Field and Heat Transfer Problems
3.1 Governing equations 76
3.2 Numerical schemes 77
3.3 LDQ discretizations 79
CHAPTER 4
Solving the two-dimensional Flow Field and Heat Transfer Problems by the Local Differential Quadrature Method
4.1 2D lid-driven cavity flows 87
4.2 Forced convection problem in backward facing step channel 95
4.3 Channel flow over heating ripple beds 101
4.4 Flow around fixed circular cylinder 109
CHAPTER 5
The Local Differential Quadrature Method for three-dimensional Flow Field and Viscous heating Problems
5.1 3D lid-driven cavity flows 119
5.2 3D cavity flows with a fixed sphere 132
CHAPTER 6
Other Applications to the Local Differential Quadrature
6.1 The meshless local differential quadrature method for the refining technique 142
6.1.1 Advection-diffusion equation 143
6.1.2 Solving advection-diffusion equation by Gaussian based local differential quadrature method 145
6.2 Solving the Moving Boundary Problems by the Local Differential Quadrature Method 151
6.2.1 Treatments of the moving boundaries 152
6.2.2 Three-dimensional lid-driven cavity flow with a moving sphere 153
CHAPTER 7
Conclusions and Suggestions
7.1 Conclusions 160
7.2 Suggestions for the further research 162
References 163
dc.language.isoen
dc.subject無網格zh_TW
dc.subject數值模式zh_TW
dc.subject區域微分積分法zh_TW
dc.subject不規則計算域zh_TW
dc.subject計算流體力學zh_TW
dc.subjectmeshlessen
dc.subjectirregular domainen
dc.subjectlocal differential quadrature (LDQ) methoden
dc.subjectcomputational fluid dynamics (CFD)en
dc.subjectnumerical modelen
dc.title以區域微分積分法求解不規則計算域問題及其在流體力學及熱傳播上的應用zh_TW
dc.titleLocal Differential Quadrature Method for Irregular Domain Problems and Its Application in Fluid Mechanics and Heat Transferen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee蔡丁貴,卡艾瑋,陳長鈕,廖清標,劉進賢,羅德章
dc.subject.keyword區域微分積分法,不規則計算域,數值模式,計算流體力學,無網格,zh_TW
dc.subject.keywordlocal differential quadrature (LDQ) method,irregular domain,numerical model,computational fluid dynamics (CFD),meshless,en
dc.relation.page178
dc.rights.note有償授權
dc.date.accepted2009-01-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
12.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved