Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強(Wei-Chiang Shen)
dc.contributor.authorJia-Zheng Luen
dc.contributor.author呂佳政zh_TW
dc.date.accessioned2021-06-15T00:29:05Z-
dc.date.available2009-02-03
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-20
dc.identifier.citationAlspaugh, J.A., Cavallo, L.M., Perfect, J.R., and Heitman, J. (2000) RAS1 regulates
filamentation, mating and growth at high temperature of Cryptococcus
neoformans. Mol Microbiol 36: 352-365.
Aoki, Y., Yamamoto, M., Hosseini-Mazinani, S.M., Koshikawa, N., Sugimoto, K., and
Arisawa, M. (1996) Antifungal azoxybacilin exhibits activity by inhibiting gene
expression of sulfite reductase. Antimicrob Agents Chemother 40: 127-132.
Barz, T., Ackermann, K., and Pyerin, W. (2006) Control of methionine biosynthesis
genes by protein kinase CK2-mediated phosphorylation of Cdc34. Cell Mol Life
Sci 63: 2183-2190.
Belay, T., Cherniak, R., O'Neill, E.B., and Kozel, T.R. (1996) Serotyping of
Cryptococcus neoformans by dot enzyme assay. J Clin Microbiol 34: 466-470.
Bose, I., Reese, A.J., Ory, J.J., Janbon, G., and Doering, T.L. (2003) A yeast under
cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2: 655-663.
Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D.
(1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C:
a useful set of strains and plasmids for PCR-mediated gene disruption and other
applications. Yeast 14: 115-132.
Casadevall, A., Rosas, A.L., and Nosanchuk, J.D. (2000) Melanin and virulence in
Cryptococcus neoformans. Curr Opin Microbiol 3: 354-358.
Casalone, E., Colella, C.M., Daly, S., Gallori, E., Moriani, L., and Polsinelli, M. (1992)
Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet
22: 435-440.
Chang, Y.C., and Kwon-Chung, K.J. (1994) Complementation of a capsule-deficient
mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14:
4912-4919.
Chang, Y.C., and Kwon-Chung, K.J. (1998) Isolation of the third capsule-associated
gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun
66: 2230-2236.
Chen, S.H., Stins, M.F., Huang, S.H., Chen, Y.H., Kwon-Chung, K.J., Chang, Y., Kim,
K.S., Suzuki, K., and Jong, A.Y. (2003) Cryptococcus neoformans induces
47
alterations in the cytoskeleton of human brain microvascular endothelial cells. J
Med Microbiol 52: 961-970.
Cox, G.M., McDade, H.C., Chen, S.C., Tucker, S.C., Gottfredsson, M., Wright, L.C.,
Sorrell, T.C., Leidich, S.D., Casadevall, A., Ghannoum, M.A., and Perfect, J.R.
(2001) Extracellular phospholipase activity is a virulence factor for
Cryptococcus neoformans. Mol Microbiol 39: 166-175.
Donalies, U.E., and Stahl, U. (2002) Increasing sulphite formation in Saccharomyces
cerevisiae by overexpression of MET14 and SSU1. Yeast 19: 475-484.
Edman, J.C., and Kwon-Chung, K.J. (1990) Isolation of the URA5 gene from
Cryptococcus neoformans var. neoformans and its use as a selective marker for
transformation. Mol Cell Biol 10: 4538-4544.
Fraser, J.A., Subaran, R.L., Nichols, C.B., and Heitman, J. (2003) Recapitulation of the
sexual cycle of the primary fungal pathogen Cryptococcus neoformans var.
gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell
2: 1036-1045.
Griffith, C.L., Klutts, J.S., Zhang, L., Levery, S.B., and Doering, T.L. (2004) UDPglucose
dehydrogenase plays multiple roles in the biology of the pathogenic
fungus Cryptococcus neoformans. J Biol Chem 279: 51669-51676.
Hansen, J., Cherest, H., and Kielland-Brandt, M.C. (1994) Two divergent MET10 genes,
one from Saccharomyces cerevisiae and one from Saccharomyces
carlsbergensis, encode the α subunit of sulfite reductase and specify potential
binding sites for FAD and NADPH. J Bacteriol 176: 6050-6058.
Hansen, J., and Johannesen, P.F. (2000) Cysteine is essential for transcriptional
regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol
Gen Genet 263: 535-542.
Hansen, J., and Kielland-Brandt, M.C. (1996a) Inactivation of MET2 in brewer's yeast
increases the level of sulfite in beer. J Biotechnol 50: 75-87.
Hansen, J., and Kielland-Brandt, M.C. (1996b) Inactivation of MET10 in brewer's yeast
specifically increases SO2 formation during beer production. Nat Biotechnol 14:
1587-1591.
Hu, G., and Kronstad, J.W. (2006) Gene disruption in Cryptococcus neoformans and
Cryptococcus gattii by in vitro transposition. Curr Genet 49: 341-350.
Jamieson, D.J. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae.
Yeast 14: 1511-1527.
48
Janbon, G. (2004) Cryptococcus neoformans capsule biosynthesis and regulation.
FEMS Yeast Res 4: 765-771.
Jiranek, V., Langridge, P., and Henschke, P.A. (1995) Regulation of hydrogen sulfide
liberation in wine-producing Saccharomyces cerevisiae strains by assimilable
nitrogen. Appl Environ Microbiol 61: 461-467.
Kaufmann, C.S., and Merz, W.G. (1982) Two rapid pigmentation tests for identification
of Cryptococcus neoformans. J Clin Microbiol 15: 339-341.
Kwon-Chung, K.J. (1976) Morphogenesis of Filobasidiella neoformans, the sexual
state of Cryptococcus neoformans. Mycologia 68: 821-833.
Kwon-Chung, K.J., Polacheck, I., and Popkin, T.J. (1982) Melanin-lacking mutants of
Cryptococcus neoformans and their virulence for mice. J Bacteriol 150: 1414-
1421.
Kwon-Chung, K.J., and Rhodes, J.C. (1986) Encapsulation and melanin formation as
indicators of virulence in Cryptococcus neoformans. Infect Immun 51: 218-223.
Kwon-Chung, K.J., Edman, J.C., and Wickes, B.L. (1992) Genetic association of
mating types and virulence in Cryptococcus neoformans. Infect Immun 60: 602-
605.
Lin, X., Hull, C.M., and Heitman, J. (2005) Sexual reproduction between partners of the
same mating type in Cryptococcus neoformans. Nature 434: 1017-1021.
Lin, X., and Heitman, J. (2006) The biology of the Cryptococcus neoformans species
complex. Annu Rev Microbiol 60: 69-105.
Magasanik, B., and Kaiser, C.A. (2002) Nitrogen regulation in Saccharomyces
cerevisiae. Gene 290: 1-18.
Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., and Moreno-Sanchez, R.
(2005) Sulfur assimilation and glutathione metabolism under cadmium stress in
yeast, protists and plants. FEMS Microbiol Rev 29: 653-671.
Missall, T.A., Moran, J.M., Corbett, J.A., and Lodge, J.K. (2005) Distinct stress
responses of two functional laccases in Cryptococcus neoformans are revealed
in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4: 202-208.
Moyrand, F., and Janbon, G. (2004) UGD1, encoding the Cryptococcus neoformans
UDP-glucose dehydrogenase, is essential for growth at 37℃ and for capsule
biosynthesis. Eukaryot Cell 3: 1601-1608.
49
Mylonakis, E., Moreno, R., El Khoury, J.B., Idnurm, A., Heitman, J., Calderwood, S.B.,
Ausubel, F.M., and Diener, A. (2005) Galleria mellonella as a model system to
study Cryptococcus neoformans pathogenesis. Infect Immun 73: 3842-3850.
Nazi, I., Scott, A., Sham, A., Rossi, L., Williamson, P.R., Kronstad, J.W., and Wright,
G.D. (2007) Role of homoserine transacetylase as a new target for antifungal
agents. Antimicrob Agents Chemother 51: 1731-1736.
Noctor, G., Strohm, M., Jouanin, L., Kunert, K.J., Foyer, C.H., and Rennenberg, H.
(1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing
γ-glutamylcysteine synthetase. Plant Physiol 112: 1071-1078.
Pascon, R.C., Ganous, T.M., Kingsbury, J.M., Cox, G.M., and McCusker, J.H. (2004)
Cryptococcus neoformans methionine synthase: expression analysis and
requirement for virulence. Microbiology 150: 3013-3023.
Perfect, J.R., Toffaletti, D.L., and Rude, T.H. (1993) The gene encoding
phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of
Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 61: 4446-4451.
Salas, S.D., Bennett, J.E., Kwon-Chung, K.J., Perfect, J.R., and Williamson, P.R. (1996)
Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans.
J Exp Med 184: 377-386.
Schimz, K.L. (1980) The effect of sulfite on the yeast Saccharomyces cerevisiae. Arch
Microbiol 125: 89-95.
Sia, R.A., Lengeler, K.B., and Heitman, J. (2000) Diploid strains of the pathogenic
basidiomycete Cryptococcus neoformans are thermally dimorphic. Fungal
Genet Biol 29: 153-163.
Steenbergen, J.N., and Casadevall, A. (2003) The origin and maintenance of virulence
for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5:
667-675.
Thomas, D., and Surdin-Kerjan, Y. (1991) The synthesis of the two S-adenosylmethionine
synthetases is differently regulated in Saccharomyces cerevisiae.
Mol Gen Genet 226: 224-232.
Thomas, D., and Surdin-Kerjan, Y. (1997) Metabolism of sulfur amino acids in
Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61: 503-532.
50
Tscharke, R.L., Lazera, M., Chang, Y.C., Wickes, B.L., and Kwon-Chung, K.J. (2003)
Haploid fruiting in Cryptococcus neoformans is not mating type α-specific.
Fungal Genet Biol 39: 230-237.
Vartivarian, S.E., Anaissie, E.J., Cowart, R.E., Sprigg, H.A., Tingler, M.J., and
Jacobson, E.S. (1993) Regulation of cryptococcal capsular polysaccharide by
iron. J Infect Dis 167: 186-190.
Wickes, B.L., Mayorga, M.E., Edman, U., and Edman, J.C. (1996) Dimorphism and
haploid fruiting in Cryptococcus neoformans: association with the α-mating
type. Proc Natl Acad Sci U S A 93: 7327-7331.
Williamson, P.R. (1994) Biochemical and molecular characterization of the diphenol
oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 176:
656-664.
Xu, X., Wightman, J.D., Geller, B.L., Avram, D., and Bakalinsky, A.T. (1994) Isolation
and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet
25: 488-496.
Yang, Z., Pascon, R.C., Alspaugh, A., Cox, G.M., and McCusker, J.H. (2002)
Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and
a met3 mutant. Microbiology 148: 2617-2625.
Zaragoza, O., and Casadevall, A. (2004) Experimental modulation of capsule size in
Cryptococcus neoformans. Biol Proced Online 6: 10-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41726-
dc.description.abstract常見的含硫胺基酸包括半胱胺酸(cysteine)與甲硫胺酸(methionine),此
二者對於生物細胞的正常生理活動有重要貢獻。硫酸鹽同化途徑(sulfate
assimilation pathway,SAP),包含有一系列的還原步驟,將無機氧化態硫素進行
同化,並合成含硫胺基酸。在真菌界的各物種中,SAP 的主要步驟相當類似,參
與其中基因的蛋白質序列,也有很高的保守性。以啤酒酵母菌(Saccharomyces
cerevisiae)為例,環境中的硫酸鹽類被 Sul1p 與 Sul2p(sulfate transporter)運送
至細胞內,經 Met3p(ATP sulfurylase)催化成 5’-adenylylsulfate(APS)。接
著,經 Met14p(APS kinase)作用,加上一個磷酸根,後成為 3’-phospho-5’-
adenylylsulfate ( PAPS ) , 再經 Met16p ( PAPS reductase ) 轉為亞硫酸鹽
(sulfite)。最後,由 Met10p 與 Met5p(sulfite reductase α and β subunit)組成的
酵素複合體,將亞硫酸鹽還原成負二價硫離子(sulfide),硫離子即可繼續作為
合成含硫胺基酸或其他含硫化合物之用。本研究之目的,為探討 MET5 基因於隱
球菌之生理角色,首先利用 in vitro transposition 反應製備得突變載體,再以基因
槍轉殖技術,將其送入隱球菌野生菌株內。經南方雜合分析及細胞內硫離子含量
測定,確認隱球菌 met5 突變株。met5 突變株造成半胱胺酸營養缺陷型、生長速
率緩慢、生殖菌絲減少、無黑色素形成,以及於替代性昆蟲宿主體內之致病力大
幅下降等情形。上述 met5 突變株的缺陷,在重新轉殖 MET5 基因至突變株後,
回復至野生株之性狀。本研究之結果與前人研究一致,證實硫酸鹽同化途徑,對
於隱球菌的生理作用有極大重要性,後續之深入研究,有潛力發展出抗真菌藥劑
之可能標的。
zh_TW
dc.description.abstractSulfur-containing amino acids such as cysteine and methionine are important for
cellular physiology. Sulfate assimilation pathway (SAP) is a reduction sequence
involved in the biosynthesis of these amino acids from the inorganic oxidized sulfur
source. In Fungi, sequential steps of SAP are similar, and enzymes involved in this
pathway are also highly conserved. In Saccharomyces cerevisiae, exogenous sulfate is
transported from the environment into yeast cells by sulfate transporter, Sul1p and
Sul2p, and catalyzed by ATP sulfurylase, Met3p, to form 5’-adenylylsulfate (APS).
APS is subsequently phosphorylated by Met14p, APS kinase, to produce 3’-phospho-
5’-adenylylsulfate (PAPS), and then reduced by Met16p (PAPS reductase) to generate
sulfite. Finally, the sulfite reductase enzyme complex consisted of α subunit Met10p
and β subunit Met5p further reduces sulfite to sulfide. The reduced sulfur ion can then
be incorporated into sulfur-containing amino acids or compounds. In this report, we
study the roles of the MET5 homologue in the human fungal pathogen Cryptococcus
neoformans. The gene disruption construct was created by in vitro transposition and
delivered into the wild-type strain by biolistic transformation. Gene disrupted mutants
were verified and characterized. C. neoformans met5 mutants were auxotrophic for
cysteine, reduced the growth rate, severely attenuated for mating differentiation, failed
to produce melanin in vitro, and lost virulence in the alternative insect host model. All
the defects were reverted to the wild-type by reintroduction of the intact copy MET5
gene. Consistent with previous reports, our results showed that the components of SAP
play important roles in the physiological processes of C. neoformans and maybe serve
as potential targets for antifungal therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:29:05Z (GMT). No. of bitstreams: 1
ntu-98-R95633021-1.pdf: 7569786 bytes, checksum: 6817ca9b8dd0a2f428fa675caf85c753 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝..............................................................................................................................i
摘要.............................................................................................................................ii
Abstract......................................................................................................................iii
第一章 前言.............................................................................................................. 1
1.1 硫酸鹽同化途徑(sulfate assimilation pathway,SAP) .................................. 1
1.2 啤酒酵母菌於 SAP 的相關研究........................................................................ 2
1.3 隱球菌(Cryptococcus neoformans) ................................................................ 3
1.4 隱球菌的生命週期............................................................................................. 4
1.5 隱球菌的致病因子............................................................................................. 5
1.6 隱球菌於 SAP 的相關研究................................................................................ 6
第二章 材料與方法.................................................................................................. 9
2.1 實驗菌株及培養條件......................................................................................... 9
2.2 隱球菌 MET5 同源基因之選殖........................................................................ 10
2.3 突變質體 pmet5-NAT 之建構及隱球菌 met5 突變株之篩選.......................... 10
2.4 隱球菌 MET5R 重建株之建構......................................................................... 11
2.5 基因槍轉殖技術(biolistic transformation)................................................... 11
2.6 隱球菌少量基因體 DNA 之抽取..................................................................... 12
2.7 隱球菌大量基因體 DNA 之抽取..................................................................... 12
2.8 南方雜合分析(Southern hybridization analysis) .......................................... 13
2.9 隱球菌 RNA 之抽取........................................................................................ 14
2.10 北方雜合分析(Northern hybridization analysis) ........................................ 14
2.11 同步定量 PCR(real-time quantitative PCR) ............................................... 15
2.12 隱球菌菌體內硫離子生成之測定.................................................................. 15
2.13 隱球菌生長速率之測定................................................................................. 16
2.14 隱球菌致病因子之測定................................................................................. 16
v
2.15 Scanning EM 標本之製備.............................................................................. 16
2.16 隱球菌之毒性試驗......................................................................................... 17
第三章 結果............................................................................................................ 18
3.1 隱球菌硫酸鹽同化途徑................................................................................... 18
3.2 隱球菌 MET5 同源基因................................................................................... 18
3.3 隱球菌 met5 突變株與回復突變株之建構與確認........................................... 19
3.4 隱球菌 met5 突變株生長速率較慢.................................................................. 20
3.5 隱球菌 met5 突變株為半胱胺酸(cysteine)營養缺陷型.............................. 20
3.6 隱球菌 met5 突變株無法正常進行有性生殖................................................... 21
3.7 隱球菌 met5 突變株能正常地合成莢膜.......................................................... 22
3.8 隱球菌 me5 突變株可能具有細胞壁的缺陷.................................................... 22
3.9 隱球菌 met5 突變株無法形成黑色素.............................................................. 23
3.10 隱球菌 met5 突變株失去致病性.................................................................... 24
第四章 討論............................................................................................................ 26
圖............................................................................................................................... 31
表............................................................................................................................... 43
參考文獻.................................................................................................................. 46
附錄........................................................................................................................... 51
dc.language.isozh-TW
dc.titleMET5 同源基因為隱球菌生長、有性生殖及致病性所必須zh_TW
dc.titleThe MET5 homologue is required for growth, mating, and virulence in Cryptococcus neoformansen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),藍忠昱,羅?升
dc.subject.keyword硫酸鹽同化途徑,隱球菌,MET5,半胱胺酸,甲硫胺酸,啤酒酵母菌,zh_TW
dc.subject.keywordSulfate assimilation pathway,Cryptococcus neoformans,MET5,Cysteine,Methionine,Saccharomyces cerevisiae,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2009-01-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved