Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41720
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家利(Chia-Li Yu)
dc.contributor.authorYu-Hsuan Chenen
dc.contributor.author陳昱璇zh_TW
dc.date.accessioned2021-06-15T00:28:52Z-
dc.date.available2011-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citationREFERENCES

1. Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 2004;363:1277-81.
2. Choi HK, Curhan G. Gout: epidemiology and lifestyle choices. Curr Opin Rheumatol. 2005;17:341-5.
3. Nuki G, Simkin PA. A concise history of gout and hyperuricemia and their treatment. Arthritis Res Ther 2006;8(Suppl 1):S1.
4. Annemans L, Spaepen E, Gaskin M, et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000-2005. Ann Rheum Dis 2008;67:960-6.
5. Saag KG, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res Ther 2006;8(Suppl 1):S2.
6. Martinon F, Glimcher LH. Gout: new insights into an old disease. J Clin Invest
2006;116:2073-5.
7. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med 2005;143:499-516.
8. Edwards NL. Treatment-failure gout: a moving target. Arthritis Rheum 2008;58:2587-90.
9. Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci USA 1989;86:9412-6.
10. Wu XW, Muzny DM, Lee CC, et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992;34:78-84.
11. Doherty M. New insights into the epidemiology of gout. Rheumatology 2009; 48:ii2–ii8.
12. Martin F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 2010;233:218-32.
13. Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity. Immunol Rev 2010;233:203–217.
14. Smith EU, Díaz-Torné C, Perez-Ruiz F, et al. Epidemiology of gout: An update. Best Pract Res Clin Rheumatol 2010;24:811-27.
15. Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 2008;40:437–42.
16. Campion EW, Glynn RJ, Delabry LO. Asymptomatic hyerpuricemia. Risks and consequences in the normative aging study. Am J Med 1987;82:421-426.
17. Brauer GW, Prior IA. A prospective study of gout in New Zealand Maoris. Ann Rheum Dis 1978;37:466–72.
18. Emmerson BT. The management of gout. N Engl J Med 1996;334:445-451.
19. Richette P, Bardin T. Gout. Lancet 2010;375:318–28.
20. Luk AJ, Simkin PA. Epidemiology of hyperuricemia and gout. Am J Manag Care 2005;11(Suppl 5):S435-42.
21. Dincer HE, Dincer AP, Levenson DJ. Asymptomatic hyperuricemia; To treat or not to treat. Cleveland Clin J Med 2002;69:594-608.
22. Riches PL, Wright AF, Ralston SH. Recent insights into the pathogenesis of hyperuricaemia and gout. Hum Mol Genet 2009;18(R2):R177-84.
23. Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002;417:447-452.
24. Graessler J, Graessler A, Unger S, et al. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 2006;54:292–300.
25. Le MT, Shafiu M, Mu W, et al. SLC2A9—a fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant 2008;23:2746–9.
26. Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 2008;40:430–6.
27. Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953-61.
28. Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis 2007;66:1374-7.
29. Wallace KL, Riedel AA, Joseph-Ridge N, et al. Increasing prevalence of gout and hyperuricemia over 10 years among older adults in a managed care population. J Rheumatol 2004;31:1582-7.
30. Hak EA, Choi HK. Menopause, postmenopausal hormone use and serum uric acid levels in US women – The third national health and nutrition examination survey. Arthritis Res Ther 2008;10:R116.
31. Pui K, Waddell C, Dalbeth N. Early onset of hyperuricaemia and gout following treatment for female to male gender reassignment. Rheumatol (Oxford) 2008;47:1840-1.
32. Lally EV, Ho Jr G, Kaplan SR. The clinical spectrum of gouty arthritis in women. Arch Intern Med 1986;146:2221-5.
33. De Souza AWS, Fernandes V, Ferrari AJL. Female gout. J Rheumatol 2005;32:2186-8.
34. Harrold LR, Yood RA, Mikulus TR, et al. Sex differences in gout epidemiology. Ann Rheum Dis 2006;65:1368-72.
35. Puig JG, Michán AD, Jiménez ML, et al. Female gout. Clinical spectrum and uric acid metabolism. Arch Intern Med 1991;151:726-32.
36. Choi HK, Atkinson K, Karlson EW, et al. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med 2005;165:742-8.
37. Chen LX, Schumacher HR. Gout: an evidence-based review. J Clin Rheumatol 2008;14(Suppl 5):S55-62.
38. Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 2004;350:1093-103.
39. Rider TG, Jordan KM. The modern management of gout. Rheumatology (Oxford). 2010;49:5-14.
40. Becker MA, Levinson D. Clinical gout andpathogenesis of hyperuricemia. 13th ed. In: Koopman WJ, ed. Arthritis and Allied Conditions. 1996.
41. Eggebeen AT. Gout: an update. Am Fam Physician 2007;76: 801-8.
42. Cronstein BN, Terkeltaub R. The inflammatory process of gout and its treatment. Arthritis Res Ther 2006;8(Suppl 1):S3.
43. Poor G, Mituszova M. Crystal-related arthropathies. In: Hochberg MC, Silman AJ, Smolen JS, et al, eds. Rheumatology. 3rd ed. London: Mosby, 2003:1891-964.
44. Gutman AB. Gout. Textbook of Medicine. 12th ed. Beeson PB, McDermott W, eds. Philadelphia: W. B. Saunders, 1958:595.
45. Pascual E, Batlle-Gualda E, Martinez A, et al. Synovial fluid analysis for diagnosis of intercritical gout. Ann Intern Med 1999;131:756-9.
46. Pascual E, Pedraz T. Gout. Curr Opin Rheumatol 2004;16:282-6.
47. Terkeltaub R. Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 2010;6:30-8.
48. Gutman AB. The past four decades of progress in the knowledge of gout with an assessment of the present status. Arthritis Rheum 1973;16:431.
49. Teng GG, Nair R, Saag KG. Pathophysiology, clinical presentation and treatment of gout. Drugs 2006;66:1547-63.
50. Tausche AK, Jansen TL, Schröder HE, et al. Gout--current diagnosis and treatment. Dtsch Arztebl Int 2009;106:549–55.
51. Yu TF. Nephrolithiasis in patients with gout. Postgrad Med 1978;63:164-70.
52. Wallace SL, Robinson H, Masi AT, et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 1977;20:895-900.
53. McCarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med 1961;54:452–460.
54. Pascual E, Sivera F, Andrés M. Synovial fluid analysis for crystals. Curr Opin Rheumatol 2011;23:161-9.
55. Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum 2004;50:2400–2414.
56. McCarty DJ, Kohn NN, Faires JS. The significance of calcium phosphate crystals in the synovial fluid of arthritis patients: the pseudogout syndrome? I. Clinical aspects. Ann Intern Med 1962;56:711.
57. Wortman RL. Gout and other disorders of purine metabolism. In: Fauci AS, ed. Harrison's Principles of internal medicine. 14th ed. New York: McGraw-Hill, 1998:2158-65.
58. Schlesinger N, Thiele RG. The pathogenesis of bone erosions in gouty arthritis. Ann Rheum Dis 2010;69:1907-12.
59. Harris MD, Siegel LB, Alloway JA. Gout and hyperuricemia. Am Fam Physician 1999;59:925-34.
60. Pittman JR, Bross MH. Diagnosis and management of gout. Am Fam Physician 1999;59:1799-806.
61. Bjorkman DJ. Current status of nonsteroidal anti-inflammatory drug (NSAID) use in the United States: risk factors and frequency of complications. Am J Med 1999;107:S3-S8.
62. Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal anti-inflammatory drugs. N Engl J Med 1999;340:1888-99.
63. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004;56:387-437.
64. Ahern MJ, Reid C, Gordon TP, et al. Does colchicine work? The results of the first controlled study in acute gout. Aust N Z J Med 1987;17:301-4.
65. Spilberg I, Mandell B, Mehta J, et al. Mechanism of action of colchicine in acute urate crystal-induced arthritis. J Clin Invest 1979;64:775-80.
66. Levy M, Spino M, Read SE. Colchicine: a state-of-the-art review. Pharmacotherapy 1991;113:196-211.
67. Roberge CJ, Gaudry M, de Medicis R, et al. Crystal-induced neutrophil activation. IV. Specific inhibition of tyrosine phosphorylation by colchicine. J Clin Invest 1993;92:1722-9.
68. Winzenberg T, Buchbinder R. Cochrane Musculoskeletal Group review: acute gout. Steroids or NSAIDs? Let this overview from the Cochrane Group help you decide what's best for your patient. J Fam Pract 2009;58:E1–4.
69. Groft GD, Franck WA, Raddarz DA. Systemic Steroid Therapy for Acute Gout: A clinical trial and review of the literature. Semin Arthritis Rheum 1990;19:329.
70. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006,440:237–241.
71. Burns CM, Wortmann RL. Gout therapeutics: new drugs for an old disease. Lancet 2011;377:165-77.
72. Zhang W, Doherty M, Bardin T, et al. EULAR evidence based recommendations for gout - Part II Management: Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006;65:1312-24.
73. Terkeltaub RA. Clinical practice. Gout. N Engl J Med 2003;349:1647-55.
74. DiGiovine FS, Malvista SE, Nuki G, et al. Interleukin 1 (IL-1) as a mediator of crystal arthritis: stimulation of T cell and synovial fibroblast mitogenesis by urate crystal induced IL-1. J Immunol 1987;138:3213-18.
75. DiGiovine FS, Malawista SE, Thornton E, et al. Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 1991;87:1375-81.
76. Guerne PA, Zuraw BL, Vaughan JH, et al. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest 1989;83:585-92 .
77. Terkeltaub R, Zachariae C, Santoro D, et al. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum 1991;34:894-903.
78. Roth J, Vogl T, Sorg C, et al. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 2003;24:155-58.
79. Russell IJ, Papaioannou C, McDuffie FC, et al. Effect of IgG and C-reactive protein on complement depletion by monosodium urate crystals. J Rheumatol 1983;10:425-33.
80. Dalbeth N, Haskard DO. Mechanisms of inflammation in gout. Rheumatology (Oxford) 2005;44:1090-6.
81. So A. Developments in the scientific and clinical understanding of gout. Arthritis Res Ther 2008;10:221.
82. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003;425:516-21.
83. Liu-Bryan R, Pritzker K, Firestein GS, et al. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 2005;174:5016-23.
84. Liu-Bryan R, Scott P, Sydlaske A, et al. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005;52:2936-2946.
85. Chen CJ, Shi Y, Hearn A, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006;116:2262-71.
86. Martin WJ, Harper JL. Innate inflammation and resolution in acute gout. Immunol Cell Biol 2010;88:15-9.
87. Scott P, Ma H, Viriyakosol S, et al. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 2006;177:6370-78.
88. Ng G, Sharma K, Ward SM, et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 2008;29:807-18.
89. Dostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008,320:674-77.
90. Hasselbacher P. C3 activation by monosodium urate monohydrate and other crystalline material. Arthritis Rheum 1979;22:571-8.
91. Doherty M, Whicher JT, Dieppe PA. Activation of the alternative pathway of complement by monosodium urate monohydrate crystals and other inflammatory particles. Ann Rheum Dis 1983;42:285-91.
92. Giclas PC, Ginsberg MH, Cooper NR. Immunoglobulin G independent activation of the classical complement pathway by monosodium urate crystals. J Clin Invest 1979;63:759-64.
93. Busso N, So A. Mechanisms of inflammation in gout. Arthritis Res Ther 2010;12:206-13.
94. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009;27:229-65.
95. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10:417-26.
96. Brodsky IE, Monack D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009;21:199-207.
97. Martinon F. Update on biology: uric acid and the activation of immune and inflammatory cells. Curr Rheumatol Rep 2010;12:135-41.
98. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010;11:136-40.
99. Joosten LA, Netea MG, Fantuzzi G, et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 2009;60:3651-62.
100. Torres R, Macdonald L, Croll SD, et al. Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis 2009;68:1602-8.
101. So A, De Smedt T, Revaz S, et al. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007;9:R28.
102. Chapman PT, Yarwood H, Harrison AA, et al. Endothelial activation in monosodium urate monohydrate crystal-induced inflammation: in vitro and in vivo studies on the roles of tumor necrosis factor alpha and interleukin-1. Arthritis Rheum 1997;40:955-65.
103. Terkeltaub R, Baird S, Sears P, et al. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum 1998;41:900-9.
104. Hachicha M, Naccache PH, Mccoll SR. Inflammatory microcrystals differentially regulate the secretion of macrophage inflammatory protein 1 and interleukin 8 by human neutrophils: a possible mechanism of neutrophil recruitment to sites of inflammation in synovitis. J Exp Med 1995;182:2019-25.
105. Ryckman C, McColl SR, Vandal K, et al. Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Arthritis Rheum 2003;48:2310-20.
106. Champman PT, Yarwood H, Harrison AA, et al. Endothelial activation in monosodium urate monohydrate crystal-induced inflammation: in vitro and in vivo studies on the roles of tumor necrosis factor alpha and interleukin-1. Arthritis Rheum 1997;40:955-65.
107. Haskard DO, Landis RC. Interactions between leukocytes and endothelial cells in gout: lessons from a self-limiting inflammatory response. Arthritis Res 2002;4(Suppl 3):S91-7.
108. Whyte MK, Savill J, Meagher LC, et al. Coupling of neutrophil apoptosis to recognition by macrophages: coordinated acceleration by protein synthesis inhibitors. J Leukoc Biol 1997;62:195-202.
109. Akahoshi T, Nagaoka T, Namai R, et al. Prevention of neutrophil apoptosis by monosodium urate crystals. Rheumatol Int 1997;16:231-5.
110. Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett 2001;487:318-22.
111. Abramson S, Hoffstein ST, Weissmann G. Superoxide anion generation by human neutrophils exposed to monosodium urate. Arthritis Rheum 1982;25:174-80.
112. Simchowitz L, Atkinson JP, Spilberg I. Stimulation of the respiratory burst in human neutrophils by crystal phagocytosis. Arthritis Rheum 1982;25:181-8.
113. Rae SA, Davidson EM, Smith MJ. Leukotriene B4, an inflammatory mediator in gout. Lancet 1982;2:1122-24.
114. Serhan CN, Lundberg U, Weissmann G, et al. Formation of leukotrienes and hydroxyl acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins 1984;27:563-81.
115. Shirahama T, Cohen AS. Ultrastructural evidence for leakage of lysosomal contents after phagocytosis of monosodium urate crystals. A mechanism of gout inflammation. Am J Pathol 1974;76:501-20.
116. Popa-Nita O, Naccache PH. Crystal-induced neutrophil activation. Immunol Cell Biol 2010;88:32-40.
117. Roberge CJ, Grassi J, De Médicis R, et al. Crystal-neutrophil interactions lead to interleukin-1 synthesis. Agents Actions 1991;34:38-41.
118. Harada A, Sekido N, Akahoshi T, et al. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 1994;56:559-64.
119. Ng G, Chau EM, Shi Y. Recent developments in immune activation by uric acid crystals. Arch Immunol Ther Exp (Warsz) 2010;58:273-7.
120. Nagase M, Baker DG, Schumacher HR Jr. Immunoglobulin G coating on crystals and ceramics enhances polymorphonuclear cell superoxide production: correlation with immunoglobulin G adsorbed. J Rheumatol 1989;16:971-6.
121. Terkeltaub R, Smeltzer D, Curtiss LK, et al. Low density lipoprotein inhibits the physical interaction of phlogistic crystals and inflammatory cells. Arthritis Rheum. 1986;29:363-70.
122. Terkeltaub RA, Dyer CA, Martin J, et al. Apolipoprotein (apo) E inhibits the capacity of monosodium urate crystals to stimulate neutrophils. Characterization of intraarticular apo E and demonstration of apo E binding to urate crystals in vivo. J Clin Invest 1991;87:20-6.
123. Ortiz-Bravo E, Sieck MS, Schumacher HR Jr. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum 1993;36:1274-85.
124. Landis RC, Yagnik DR, Florey O, et al. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 2002;46:3026-33.
125. Lioté F, Prudhommeaux F, Schiltz C, et al. Inhibition and prevention of monosodium urate monohydrate crystal-induced acute inflammation in vivo by transforming growth factor beta1. Arthritis Rheum 1996;39:1192-8.
126. Yagnik DR, Hillyer P, Marshall D, et al. Noninflammatory phagocytosis of monosodium urate monohydrate crystals by mouse macrophages. Implications for the control of joint inflammation in gout. Arthritis Rheum 2000;43:1779-89.
127. Yagnik DR, Evans BJ, Florey O, et al. Macrophage release of transforming growth factor beta1 during resolution of monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2004;50:2273-80.
128. Fava R, Olsen N, Keski-Oja J, et al. Active and latent forms of transforming growth factor beta activity in synovial effusions. J Exp Med 1989;169:291-6.
129. Chang SJ, Chen CJ, Tsai FC, et al. Associations between gout tophus and polymorphisms 869T/C and -509C/T in transforming growth factor beta1 gene. Rheumatology (Oxford) 2008;47:617-21.
130. Redini F, Mauviel A, Pronost S, et al. Transforming growth factor beta exerts opposite effects from interleukin-1 beta on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum 1993;36:44-50.
131. Wahl SM, McCartney-Francis N, Allen JB, et al. Macrophage production of TGF-beta and regulation by TGF-beta. Ann NY Acad Sci 1990;593:188-96.
132. Martin WJ, Shaw O, Liu X, et al. Monosodium urate monohydrate crystal-recruited noninflammatory monocytes differentiate into M1-like proinflammatory macrophages in a peritoneal murine model of gout. Arthritis Rheum 2011;63:1322-32.
133. Terkeltaub RA. What stops a gouty attack? J Rheumatol. 1992;19:8-10.
134. Lioté F, Ea HK. Recent developments in crystal-induced inflammation pathogenesis and management. Curr Rheumatol Rep 2007;9:243-50.
135. Murakami Y, Akahoshi T, Kawai S, et al. Antiinflammatory effect of retrovirally transfected interleukin-10 on monosodium urate monohydrate crystal-induced acute inflammation in murine air pouches. Arthritis Rheum 2002;46:2504-13.
136. Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101:890-8.
137. Savill JS, Wyllie AH, Henson JE, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989;83:865-75.
138. Glass CK. Potential roles of the peroxisome proliferator-activated receptor-gamma in macrophage biology and atherosclerosis. J Endocrinol 2001;169:461-4.
139. Akahoshi T, Namai R, Murakami Y, et al. Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum 2003;48:231-39.
140. Hilton DJ. Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999;55:1568-77.
141. Yoshimura A, Nishinakamura H, Matsumura Y, et al. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther 2005;7:100-10.
142. Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signaling pathway. Semin Cell Dev Biol 2008;19:414-22.
143. Ilangumaran S, Ramanathan S, Rottapel R. Regulation of the immune system by SOCS family adaptor proteins. Semin. Immunol 2004;16:351-65.
144. Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nature Immunol 2003;4:1169-76.
145. Shouda T, Yoshida T, Hanada T, et al. Induction of the cytokine signal regulator SOCS3/CIS as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 2001;108:1781-8.
146. Seegmiller JE, Howell RR, Malawista SE. The inflammatory reaction to sodium urate. JAMA 1962;180:469-75.
147. Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986;29:1039-49.
148. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315-24.
149. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984;27:361-8.
150. Kinjyo I, Inoue H, Hamano S, et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. J Exp Med 2006;203:1021-31.
151. Yoshimura A, Ohkubo T, Kiguchi T, et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 1995;14:2816-26.
152. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000;18:143-64.
153. Chen L, Hsieh MS, Ho HC, et al. Stimulation of inducible nitric oxide synthase by monosodium urate crystals in macrophages and expression of iNOS in gouty arthritis. Nitric Oxide 2004;11:228-36.
154. Benkhart EM, Siedlar M, Wedel A, et al. Role of Stat3 in lipopolysaccharide induced IL-10 gene expression. J Immunol 2000;165:1612-17.
155. Van Zee KJ, Kohno T, Fischer E, et al. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 1992;89:4845-9.
156. Gatanaga T, Hwang CD, Kohr W, et al. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients. Proc Natl Acad Sci USA 1990;87:8781-4.
157. Engelmann H, Aderka D, Rubinstein M, et al. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem 1989;264:11974-80.
158. Andus T, Gross V, Holstege A, et al. High concentrations of soluble tumor necrosis factor receptors in ascites. Hepatology 1992;16:749-55.
159. Cope AP, Aderka D, Doherty M, et al. Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis Rheum 1992;35:1160-9.
160. Aderka D, Wysenbeek A, Engelmann H, et al. Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. Arthritis Rheum 1993;36:1111-20.
161. Denz H, Orth B, Weiss G, et al. Serum soluble tumour necrosis factor receptor 55 is increased in patients with haematological neoplasias and is associated with immune activation and weight loss. Eur J Cancer 1993;29A:2232-5.
162. Starr R, Willson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signaling. Nature 1997;387:917-21.
163. Dalpke A, Heeg K, Bartz H, et al. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology 2008; 213:225-35.
164. Hermann J, Gruber S, Neufeld JB, et al. IL10R1 loss-of-function alleles in rheumatoid arthritis and systemic lupus erythematosus. Clin Exp Rheumatol 2009; 27:603-8.
165. Yasukawa H, Hoshijima M, Gu Y, et al. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 2001;108:1459-6.
166. Ripley BJ, Fujimoto M, Serada S, et al. Green tea polyphenol epigallocatechin gallate inhibits cell signaling by inducing SOCS1 gene expression. Int Immunol 2010;22:359-66.
167. Matsumoto A, Masuhara M, Mitsui K, et al. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997;89:3148-54.
168. Pezet A, Ferrag F, Kelly PA, et al. Tyrosine docking sites of the rat prolactin receptor required for association and activation of stat5. J Biol Chem 1997;272: 25043-50.
169. Ram PA, Waxman DJ. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 1999;274: 35553-61.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41720-
dc.description.abstract摘要
痛風是因單鈉尿酸鹽(monosodium urate, MSU)結晶體沉澱於關節內或關節周邊的柔軟組織所引起的自體發炎性及自我緩解性的常見疾病。最近的研究報告指出由於飲食及生活習性的改變、醫療照護的進步、及普遍性的長壽等諸多因素的影響,痛風成為相當常見的疾病之一。急性痛風關節炎(acute gouty arthritis, acute GA)與其它關節炎疾病不同,會有炎症自我緩解的現象,然而其分子調控機轉至今仍不清楚。本研究即對此進行探討,並從細胞內、外的調控機制來進行解析。GA的標準診斷方法為抽取患者關節液,檢驗是否有被嗜中性白血球吞噬的MSU結晶。有鑑於此,細胞外的分析則以GA患者的關節液為檢體,藉由ELISA技術,量測關節液中的transforming growth factor β1 (TGF-β1)、interleukin 1 (IL-1) receptor antagonist (IL-1ra)、IL-10、soluble tumor necrosis factor (TNF) receptor I (sTNFR-I)、sTNFR-II 等抗發炎因子的濃度。結果顯示,急性痛風關節炎病患的關節液中抗發炎因子TGF-β1、IL-1ra、IL-10、sTNFR-I/II 等濃度顯著較OA(退化性關節炎)患者為高。
細胞內調控機轉的分析則是利用小鼠巨噬細胞株(RAW264.7)為研究材料,添加MSU結晶體刺激發炎反應後,利用reverse transcription (RT)-PCR 技術,偵測細胞激素信號抑制因子cytokine inducible SH2-containing protein (CIS)、及各種suppressors of cytokine signaling (SOCS) 1-7 mRNA表現量是否受MSU結晶體調控。結果顯示MSU結晶體可顯著增加CIS和SOCS3的表現量。
為了進一步確認CIS和SOCS3於GA之病態生理學角色,本研究以急性痛風關節炎患者的: (1)滑膜組織(synovial tissue) (2)關節液中分離出的白血球(synovial fluid mononuclear cells, SFMCs) 及 (3)受MSU結晶剌激過的人類初代巨噬細胞為材料。利用免疫組織化學分析 (immunohistochemistry)、定量PCR (quantitative PCR) 及西方點墨法 (immunoblotting),檢測CIS以及SOCS3的表現情形。結果顯示上述3種檢體中皆可見CIS與SOCS3的表現量顯著增加。
為了更深入瞭解CIS在緩解MSU晶體誘發的急性炎症過程中扮演的真正分子機轉為何,本研究首先建立CIS穩定表現之RAW264.7細胞株,在CIS過度表現的細胞中,MSU晶體所誘發的IL-1β及TNF-α之分泌現象會被抑制。此外CIS的過度表現會促進signal transducer and activator of transcription 3 (STAT3) 和TGF-β1 基因啟動區 (gene promoter region)鍵結,產生更多的TGF-β1。相反地,在CIS knockdown的細胞中,則會增強IL-1β及TNF-α的表現量並削減TGF-β1之生成。
本研究首先發現細胞外抗發炎因子TGF-β1、IL-1ra、IL-10、sTNFR-I/II的濃度提昇及細胞內CIS、SOCS3之活化,有助於急性痛風關節炎之自我緩解。透過這個研究成果,不僅有助釐清急性痛風關節炎的自我緩解機轉,更開創了新的思考及研究方向,亦為痛風疾病預防暨藥物開發提供了新契機。
zh_TW
dc.description.abstractABSTRACT
Acute gouty arthritis (GA) is an autoinflammatory disease that is caused by the deposition of monosodium urate (MSU) crystals in articular joints and periarticular tissues. The inflammatory response in acute GA is typically self-limiting. Recent studies have indicated that the rising prevalence of GA is primarily due to factors such as changes in dietary habits and lifestyle, improved medical care and increased longevity. To date, the molecular basis that underlies spontaneous resolution of acute gouty inflammation remains poorly understood. In this study, we tested the hypothesis that extracellular anti-inflammatory factors and intracellular negative regulators of cytokine signaling play a role in the spontaneous resolution of acute GA.
The gold standard for the diagnosis of GA is to confirm the presence of MSU crystals in the synovial fluid, and the measurement of cytokines in the synovial fluid serves as a tool for studying the inflammatory process in vivo. Using ELISA, we assessed the levels of the primary anti-inflammatory cytokines in the synovial fluid of patients with acute GA in relation to patients with osteoarthritis (OA). The synovial fluid levels of transforming growth factor β1 (TGF-β1), interleukin 1 (IL-1) receptor antagonist (IL-1ra), IL-10 and soluble tumor necrosis factor (TNF) receptors I (sTNFR-I) and II (sTNFR-II) were all significantly elevated in patients with acute GA relative to the levels in patients with OA.
Next, we determined the mRNA levels of intracellular cytokine-inducible SH2 protein (CIS) and suppressors of cytokine signaling (SOCS) 1-7 in MSU crystal-stimulated RAW264.7 mouse macrophages by reverse transcription (RT)-PCR. In this context, the levels of CIS and SOCS3 mRNA were increased in response to stimulation with MSU crystals. Using immunohistochemical analyses, quantitative PCR and immunoblotting, we further confirmed the expression levels of CIS and SOCS3 in both the synovial tissue and synovial fluid mononuclear cells (SFMCs) from patients with GA, and MSU crystal-stimulated peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages from healthy donors.
Finally, we used CIS overexpression and small interfering RNA-mediated knockdown in RAW264.7 cells to investigate the role of CIS in resolving MSU crystal-induced acute inflammation. CIS overexpression in RAW264.7 cells attenuated the MSU crystal-induced IL-1β and TNF-α production but enhanced TGF-β1 production via increased binding of signal transducers and activators of transcription 3 (STAT3) to the TGF-β1 promoter. Conversely, CIS knockdown reversed the effect of CIS overexpression, resulting in enhanced IL-1β and TNF-α production but reduced TGFβ1 production in MSU crystal-stimulated RAW264.7 cells.
In conclusion, we demonstrate for the first time that increased production of TGF-β1, IL-1ra, IL-10 and sTNFR-I/II and upregulation of intracellular CIS and SOCS3 expression are associated with the spontaneous resolution of acute GA. These results both advance our understanding of the molecular basis of gouty inflammation resolution and have the potential to provide insights into new therapeutic strategies that can be aimed at triggering the resolution of gouty inflammation, thus preventing the clinical progression of the disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:28:52Z (GMT). No. of bitstreams: 1
ntu-100-D95448001-1.pdf: 8885607 bytes, checksum: 808f4fa46602d5e7ad773533f1d59559 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTABLE OF CONTENTS

ABSTRACT (CHINESE) iv
ABSTRACT vi
CHAPTER
1. INTRODUCTION 1
1.1 Background 1
1.2 Definition and classification of gouty arthritis 1
1.3 Pathogenesis of gouty arthritis 2
1.4 Gouty arthritis and hyperuricemia 3
1.5 Risk factors 4
1.5.1 Genetics of hyperuricemia 4
1.5.2 Age 5
1.5.3 Gender 6
1.5.4 Obesity 6
1.5.5 Lifestyle 7
1.5.6 Medications 7
1.5.7 Complications 8
1.6 Clinical presentations 8
1.6.1 Asymptomatic hyperuricemia 8
1.6.2 Acute gouty arthritis 9
1.6.3 Intercritical gouty arthritis 10
1.6.4 Chronic tophaceous gouty arthritis 10
1.7 Diagnosis 11
1.7.1 Synovial fluid examination 12
1.7.2 Blood tests 13
1.7.3 Urine tests 13
1.7.4 Imaging tests 14
1.8 Treatment 14
1.8.1 Anti-inflammatory drugs 14
1.8.2 Urate-lowering therapy 16
1.9 MSU crystal-induced inflammation 17
1.9.1 Cell types 17
1.9.2 Initiation of gouty inflammation 18
1.9.3 Recognition of MSU crystals 19
1.9.4 IL-1
dc.language.isoen
dc.subject單鈉尿酸鹽結晶體zh_TW
dc.subject自我緩解zh_TW
dc.subject急性痛風關節炎zh_TW
dc.subjectacute gouty arthritisen
dc.subjectMSU crystalsen
dc.subjectSpontaneous resolutionen
dc.title急性痛風關節炎自我緩解分子機轉之研究zh_TW
dc.titleStudies on the Molecular Basis of Spontaneous Resolution in Acute Gouty Arthritisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee李芳仁(Fang-Jen Lee),賴明宗(Ming-Zong Lai),賴振宏(Jenn-Hung Lai),蔡嘉哲(Gregory J Tsay),蔡長佑(Chang-Youh Tsai)
dc.subject.keyword急性痛風關節炎,單鈉尿酸鹽結晶體,自我緩解,zh_TW
dc.subject.keywordacute gouty arthritis,MSU crystals,Spontaneous resolution,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved