Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈麗娟
dc.contributor.authorPing-Kuei Chiuen
dc.contributor.author邱品貴zh_TW
dc.date.accessioned2021-06-15T00:28:50Z-
dc.date.available2019-02-01
dc.date.copyright2009-02-17
dc.date.issued2008
dc.date.submitted2009-01-20
dc.identifier.citation1. T.C. Pappas, A.G. Bader, B.F. Andruss, D. Brown, and L.P. Ford. Applying small RNA molecules to the directed treatment of human diseases: realizing the potential. Expert Opin Ther Targets. 12:115-127 (2008).
2. B. Leader, Q.J. Baca, and D.E. Golan. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 7:21-39 (2008).
3. F.G. Banting, C.H. Best, J.B. Collip, W.R. Campbell, and A.A. Fletcher. Pancreatic extracts in the treatment of diabetes mellitus: preliminary report. 1922. Cmaj. 145:1281-1286 (1991).
4. H. Keen, A. Glynne, J.C. Pickup, G.C. Viberti, R.W. Bilous, R.J. Jarrett, and R. Marsden. Human insulin produced by recombinant DNA technology: safety and hypoglycaemic potency in healthy men. Lancet. 2:398-401 (1980).
5. Human insulin receives FDA approval. FDA Drug Bull. 12:18-19 (1982).
6. Y. Bai, D.K. Ann, and W.C. Shen. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci U S A. 102:7292-7296 (2005).
7. P.S. Gillies, D.P. Figgitt, and H.M. Lamb. Insulin glargine. Drugs. 59:253-260; discussion 261-252 (2000).
8. S.D. Luzio, P. Beck, and D.R. Owens. Comparison of the subcutaneous absorption of insulin glargine (Lantus) and NPH insulin in patients with Type 2 diabetes. Horm Metab Res. 35:434-438 (2003).
9. F. Wang, J.M. Carabino, and C.M. Vergara. Insulin glargine: a systematic review of a long-acting insulin analogue. Clin Ther. 25:1541-1577, discussion 1539-1540 (2003).
10. J.C. Egrieand J.K. Browne. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 84 Suppl 1:3-10 (2001).
11. M. Goldbergand I. Gomez-Orellana. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2:289-295 (2003).
12. J.H. Hamman, G.M. Enslin, and A.F. Kotze. Oral delivery of peptide drugs: barriers and developments. BioDrugs. 19:165-177 (2005).
13. A. Bernkop-Schnurch. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release. 52:1-16 (1998).
14. U.B. Kompellaand V.H. Lee. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev. 46:211-245 (2001).
15. S.J. Milstein, H. Leipold, D. Sarubbi, A. Leone-Bay, G.M. Mlynek, J.R. Robinson, M. Kasimova, and E. Freire. Partially unfolded proteins efficiently penetrate cell membranes--implications for oral drug delivery. J Control Release. 53:259-267 (1998).
16. A. Leone-Bay, M. Sato, D. Paton, A.H. Hunt, D. Sarubbi, M. Carozza, J. Chou, J. McDonough, and R.A. Baughman. Oral delivery of biologically active parathyroid hormone. Pharm Res. 18:964-970 (2001).
17. E. Arbit, M. Goldberg, I. Gomez-Orellana, and S. Majuru. Oral heparin: status review. Thromb J. 4:6 (2006).
18. T. Buclin, M. Cosma Rochat, P. Burckhardt, M. Azria, and M. Attinger. Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J Bone Miner Res. 17:1478-1485 (2002).
19. H.M. Ekrami, A.R. Kennedy, and W.C. Shen. Water-soluble fatty acid derivatives as acylating agents for reversible lipidization of polypeptides. FEBS Lett. 371:283-286 (1995).
20. J. Wang, D. Chow, H. Heiati, and W.C. Shen. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release. 88:369-380 (2003).
21. J. Wang, D.J. Hogenkamp, M. Tran, W.Y. Li, R.F. Yoshimura, T.B. Johnstone, W.C. Shen, and K.W. Gee. Reversible lipidization for the oral delivery of leu-enkephalin. J Drug Target. 14:127-136 (2006).
22. K.D. Hindsand S.W. Kim. Effects of PEG conjugation on insulin properties. Adv Drug Deliv Rev. 54:505-530 (2002).
23. S. Clement, J.G. Still, G. Kosutic, and R.G. McAllister. Oral insulin product hexyl-insulin monoconjugate 2 (HIM2) in type 1 diabetes mellitus: the glucose stabilization effects of HIM2. Diabetes Technol Ther. 4:459-466 (2002).
24. M. Kipnes, P. Dandona, D. Tripathy, J.G. Still, and G. Kosutic. Control of postprandial plasma glucose by an oral insulin product (HIM2) in patients with type 2 diabetes. Diabetes Care. 26:421-426 (2003).
25. G.J. Russell-Jones. The potential use of receptor-mediated endocytosis for oral drug delivery. Adv Drug Deliv Rev. 46:59-73 (2001).
26. G.J. Russell-Jones, S.W. Westwood, and A.D. Habberfield. Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythropoietin. Bioconjug Chem. 6:459-465 (1995).
27. G.J. Russell-Jones. Use of vitamin B12 conjugates to deliver protein drugs by the oral route. Crit Rev Ther Drug Carrier Syst. 15:557-586 (1998).
28. A. Widera, Y. Bai, and W.C. Shen. The transepithelial transport of a G-CSF-transferrin conjugate in Caco-2 cells and its myelopoietic effect in BDF1 mice. Pharm Res. 21:278-284 (2004).
29. Y. Baiand W.C. Shen. Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res. 23:2116-2121 (2006).
30. D.Y. Huiand P.N. Howles. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res. 43:2017-2030 (2002).
31. M.S. Bosner, T. Gulick, D.J. Riley, C.A. Spilburg, and L.G. Lange, 3rd. Receptor-like function of heparin in the binding and uptake of neutral lipids. Proc Natl Acad Sci U S A. 85:7438-7442 (1988).
32. Y. Huangand D.Y. Hui. Metabolic fate of pancreas-derived cholesterol esterase in intestine: an in vitro study using Caco-2 cells. J Lipid Res. 31:2029-2037 (1990).
33. N. Bruneau, A. Nganga, M. Bendayan, and D. Lombardo. Transcytosis of pancreatic bile salt-dependent lipase through human Int407 intestinal cells. Exp Cell Res. 271:94-108 (2001).
34. N. Bruneau, S. Richard, F. Silvy, A. Verine, and D. Lombardo. Lectin-like Ox-LDL receptor is expressed in human INT-407 intestinal cells: involvement in the transcytosis of pancreatic bile salt-dependent lipase. Mol Biol Cell. 14:2861-2875 (2003).
35. N. Bruneau, M. Bendayan, D. Gingras, L. Ghitescu, E. Levy, and D. Lombardo. Circulating bile salt-dependent lipase originates from the pancreas via intestinal transcytosis. Gastroenterology. 124:470-480 (2003).
36. M. Pravenec, V. Kren, J. Wang, A. Bottger, L.F. van Zutphen, and T.W. Kurtz. Linkage mapping of the carboxyl ester lipase gene (Cel) to rat chromosome 3. Mamm Genome. 7:559-560 (1996).
37. T. Baba, D. Downs, K.W. Jackson, J. Tang, and C.S. Wang. Structure of human milk bile salt activated lipase. Biochemistry. 30:500-510 (1991).
38. X. Wang, C.S. Wang, J. Tang, F. Dyda, and X.C. Zhang. The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism. Structure. 5:1209-1218 (1997).
39. J.C. Chen, L.J. Miercke, J. Krucinski, J.R. Starr, G. Saenz, X. Wang, C.A. Spilburg, L.G. Lange, J.L. Ellsworth, and R.M. Stroud. Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation. Biochemistry. 37:5107-5117 (1998).
40. L.P. DiPersio, R.N. Fontaine, and D.Y. Hui. Identification of the active site serine in pancreatic cholesterol esterase by chemical modification and site-specific mutagenesis. J Biol Chem. 265:16801-16806 (1990).
41. L.P. DiPersio, R.N. Fontaine, and D.Y. Hui. Site-specific mutagenesis of an essential histidine residue in pancreatic cholesterol esterase. J Biol Chem. 266:4033-4036 (1991).
42. L.P. DiPersioand D.Y. Hui. Aspartic acid 320 is required for optimal activity of rat pancreatic cholesterol esterase. J Biol Chem. 268:300-304 (1993).
43. D.Y. Huiand J.A. Kissel. Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase. FEBS Lett. 276:131-134 (1990).
44. M. Rechsteinerand S.W. Rogers. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 21:267-271 (1996).
45. N. Bruneau, A. Nganga, E.A. Fisher, and D. Lombardo. O-Glycosylation of C-terminal tandem-repeated sequences regulates the secretion of rat pancreatic bile salt-dependent lipase. J Biol Chem. 272:27353-27361 (1997).
46. N. Abouakil, E. Rogalska, J. Bonicel, and D. Lombardo. Purification of pancreatic carboxylic-ester hydrolase by immunoaffinity and its application to the human bile-salt-stimulated lipase. Biochim Biophys Acta. 961:299-308 (1988).
47. C.A. Spilburg, D.G. Cox, X. Wang, B.A. Bernat, M.S. Bosner, and L.G. Lange. Identification of a species specific regulatory site in human pancreatic cholesterol esterase. Biochemistry. 34:15532-15538 (1995).
48. L. Blackberg, K.A. Angquist, and O. Hernell. Bile-salt-stimulated lipase in human milk: evidence for its synthesis in the lactating mammary gland. FEBS Lett. 217:37-41 (1987).
49. E.D. Camulli, M.J. Linke, H.L. Brockman, and D.Y. Hui. Identity of a cytosolic neutral cholesterol esterase in rat liver with the bile salt stimulated cholesterol esterase in pancreas. Biochim Biophys Acta. 1005:177-182 (1989).
50. R. Zolfaghari, E.H. Harrison, A.C. Ross, and E.A. Fisher. Expression in Xenopus oocytes of rat liver mRNA coding for a bile salt-dependent cholesteryl ester hydrolase. Proc Natl Acad Sci U S A. 86:6913-6916 (1989).
51. J.A. Kissel, R.N. Fontaine, C.W. Turck, H.L. Brockman, and D.Y. Hui. Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase. Biochim Biophys Acta. 1006:227-236 (1989).
52. T.G. Lee, Y.H. Lee, J.H. Kim, H.S. Kim, P.G. Suh, and S.H. Ryu. Immunological identification of cholesterol ester hydrolase in the steroidogenic tissues, adrenal glands and testis. Biochim Biophys Acta. 1346:103-108 (1997).
53. F. Liand D.Y. Hui. Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells. Biochem J. 329 ( Pt 3):675-679 (1998).
54. F.W. Holtsberg, L.E. Ozgur, D.E. Garsetti, J. Myers, R.W. Egan, and M.A. Clark. Presence in human eosinophils of a lysophospholipase similar to that found in the pancreas. Biochem J. 309 ( Pt 1):141-144 (1995).
55. F. Liand D.Y. Hui. Modified low density lipoprotein enhances the secretion of bile salt-stimulated cholesterol esterase by human monocyte-macrophages. species-specific difference in macrophage cholesteryl ester hydrolase. J Biol Chem. 272:28666-28671 (1997).
56. R. Shamir, W.J. Johnson, K. Morlock-Fitzpatrick, R. Zolfaghari, L. Li, E. Mas, D. Lombardo, D.W. Morel, and E.A. Fisher. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro. J Clin Invest. 97:1696-1704 (1996).
57. J. Le Petit-Thevenin, N. Bruneau, O. Nobili, D. Lombardo, and A. Verine. An intracellular role for pancreatic bile salt-dependent lipase: evidence for modification of lipid turnover in transfected CHO cells. Biochim Biophys Acta. 1393:307-316 (1998).
58. K. Reue, J. Zambaux, H. Wong, G. Lee, T.H. Leete, M. Ronk, J.E. Shively, B. Sternby, B. Borgstrom, D. Ameis, and et al. cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res. 32:267-276 (1991).
59. M.J. Escribanoand S. Imperial. Purification and molecular characterization of FAP, a feto-acinar protein associated with the differentiation of human pancreas. J Biol Chem. 264:21865-21871 (1989).
60. S. Roudani, E. Pasqualini, A. Margotat, M. Gastaldi, V. Sbarra, C. Malezet-Desmoulin, and D. Lombardo. Expression of a 46 kDa protein in human pancreatic tumors and its possible relationship with the bile salt-dependent lipase. Eur J Cell Biol. 65:132-144 (1994).
61. U. Lidberg, J. Nilsson, K. Stromberg, G. Stenman, P. Sahlin, S. Enerback, and G. Bjursell. Genomic organization, sequence analysis, and chromosomal localization of the human carboxyl ester lipase (CEL) gene and a CEL-like (CELL) gene. Genomics. 13:630-640 (1992).
62. G. Palade. Intracellular aspects of the process of protein synthesis. Science. 189:347-358 (1975).
63. E.A. Nigg. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 386:779-787 (1997).
64. K. Vernerand G. Schatz. Protein translocation across membranes. Science. 241:1307-1313 (1988).
65. N. Abouakil, E. Mas, N. Bruneau, A. Benajiba, and D. Lombardo. Bile salt-dependent lipase biosynthesis in rat pancreatic AR 4-2 J cells. Essential requirement of N-linked oligosaccharide for secretion and expression of a fully active enzyme. J Biol Chem. 268:25755-25763 (1993).
66. C.S. Wang, A. Dashti, K.W. Jackson, J.C. Yeh, R.D. Cummings, and J. Tang. Isolation and characterization of human milk bile salt-activated lipase C-tail fragment. Biochemistry. 34:10639-10644 (1995).
67. K.M. Loomes. Structural organisation of human bile-salt-activated lipase probed by limited proteolysis and expression of a recombinant truncated variant. Eur J Biochem. 230:607-613 (1995).
68. K.M. Loomes, H.E. Senior, P.M. West, and A.M. Roberton. Functional protective role for mucin glycosylated repetitive domains. Eur J Biochem. 266:105-111 (1999).
69. M. Krieger, P. Reddy, K. Kozarsky, D. Kingsley, L. Hobbie, and M. Penman. Analysis of the synthesis, intracellular sorting, and function of glycoproteins using a mammalian cell mutant with reversible glycosylation defects. Methods Cell Biol. 32:57-84 (1989).
70. K.R. Morlock-Fitzpatrickand E.A. Fisher. The effects of O- and N-linked glycosylation on the secretion and bile salt-stimulation of pancreatic carboxyl ester lipase activity. Proc Soc Exp Biol Med. 208:186-190 (1995).
71. L. Hansson, L. Blackberg, M. Edlund, L. Lundberg, M. Stromqvist, and O. Hernell. Recombinant human milk bile salt-stimulated lipase. Catalytic activity is retained in the absence of glycosylation and the unique proline-rich repeats. J Biol Chem. 268:26692-26698 (1993).
72. E. Pasqualini, N. Caillol, A. Valette, R. Lloubes, A. Verine, and D. Lombardo. Phosphorylation of the rat pancreatic bile-salt-dependent lipase by casein kinase II is essential for secretion. Biochem J. 345 Pt 1:121-128 (2000).
73. A. Verine, J. Le Petit-Thevenin, L. Panicot-Dubois, A. Valette, and D. Lombardo. Phosphorylation of the oncofetal variant of the human bile salt-dependent lipase. identification of phosphorylation site and relation with secretion process. J Biol Chem. 276:12356-12361 (2001).
74. J. Le Petit-Thevenin, A. Verine, A. Nganga, O. Nobili, D. Lombardo, and N. Bruneau. Impairment of bile salt-dependent lipase secretion in AR4-2J rat pancreatic cells induces its degradation by the proteasome. Biochim Biophys Acta. 1530:184-198 (2001).
75. Y. Huangand D.Y. Hui. Cholesterol esterase biosynthesis in rat pancreatic AR42J cells. Post-transcriptional activation by gastric hormones. J Biol Chem. 266:6720-6725 (1991).
76. J. Carlsson, H. Drevin, and R. Axen. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 173:723-737 (1978).
77. C. Erlanson. Purification, properties, and substrate specificity of a carboxylesterase in pancreatic juice. Scand J Gastroenterol. 10:401-408 (1975).
78. J. Hyun, H. Kothari, E. Herm, J. Mortenson, C.R. Treadwell, and G.V. Vahouny. Purification and properties of pancreatic juice cholesterol esterase. J Biol Chem. 244:1937-1945 (1969).
79. D. Lombardo, O. Guy, and C. Figarella. Purification and characterization of a carboxyl ester hydrolase from human pancreatic juice. Biochim Biophys Acta. 527:142-149 (1978).
80. S.C. Silverstein, R.M. Steinman, and Z.A. Cohn. Endocytosis. Annu Rev Biochem. 46:669-722 (1977).
81. C.S. Wang. Purification of carboxyl ester lipase from human pancreas and the amino acid sequence of the N-terminal region. Biochem Biophys Res Commun. 155:950-955 (1988).
82. H. Falt, O. Hernell, and L. Blackberg. Do human bile salt stimulated lipase and colipase-dependent pancreatic lipase share a common heparin-containing receptor? Arch Biochem Biophys. 386:188-194 (2001).
83. B.S. Kaphaliaand G.A. Ansari. Purification and characterization of rat pancreatic fatty acid ethyl ester synthase and its structural and functional relationship to pancreatic cholesterol esterase. J Biochem Mol Toxicol. 17:338-345 (2003).
84. D. Shahand W.C. Shen. Transcellular delivery of an insulin-transferrin conjugate in enterocyte-like Caco-2 cells. J Pharm Sci. 85:1306-1311 (1996).
85. E. Pasqualini, N. Caillol, L. Panicot, A. Valette, and D. Lombardo. Expression of a 70-kDa immunoreactive form of bile salt-dependent lipase by human pancreatic tumoral mia PaCa-2 cells. Arch Biochem Biophys. 375:90-100 (2000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41719-
dc.description.abstract雖然目前已有許多蛋白質藥物於臨床上使用,但其給藥方式仍以侵入性給藥為主,其醫療花費成本高,容易引起病人的不適,並造成順醫矚性較低,若改以口服給藥方式投與蛋白質藥物,可以改善這些缺點,但蛋白質藥物的口服給藥仍處在研發階段。蛋白質藥物口服給藥最困難處是在於其低身體可用率,而低身體可用率主要是因為蛋白質藥物在腸胃道的低吸收率、蛋白酶的分解和吸收之後在血中的半衰期短。因此,研究增加蛋白質口服給藥之效率的策略,並期望將來可以於臨床上使用。
膽鹽依賴性脂肪酶 (Bile-salt dependent lipase, BSDL, EC 3.1.1.13),主要是在胰臟細胞中合成,再從胰臟細胞分泌到小腸內來幫助日常飲食中脂質的消化和吸收,已有文獻指出,膽鹽依賴性脂肪酶可以經由受體媒介穿胞運輸來穿過腸道細胞,並保持其完整酵素活性。因此,本研究論文將:1. 驗證膽鹽依賴性脂肪酶與腸道細胞作用之專一性。2. 建立膽鹽依賴性脂肪酶和蛋白質藥物之接合體,並評估膽鹽依賴性脂肪酶作為蛋白質藥物的腸道載體之可行性。
我們選用AR42J大鼠胰臟上皮細胞株,作為膽鹽依賴性脂肪酶的純化來源,並採用Caco-2人類腸道上皮細胞株,作為體外實驗的模式。首先,利用無血清培養基來收集AR42J cultured medium,以簡化膽鹽依賴性脂肪酶的純化流程。純化方法一是使用實驗級切向流濃縮純化透析系統 (Millore® Pellicon XL cassettes and labscale TFF system) 來濃縮,並配合Sephacryl® S-200 High Resolution分子過濾膠體來分離,可以得到純度近90% 且蛋白活性為47.13 Units/mg的膽鹽依賴性脂肪酶,而其回復率約為67.32%;純化方法二是先用Q-sepharose® fast flow陰離子交換膠體進行粗分,再利用Sephacryl® S-200 High Resolution分子過濾膠體來分離,可以得到純度近90~95% 且蛋白活性為17.15 Units/mg的膽鹽依賴性脂肪酶,而其回復率約為41.74%。
給予Caco-2細胞125I-膽鹽依賴性脂肪酶和125I-過氧化酶來進行結合和攝取實驗,結果顯示,在0.1~1 μM的濃度之下,Caco-2細胞對膽鹽依賴性脂肪酶和過氧化酶的細胞內攝取分別為:-0.03±0.09, 1.23±0.21, 1.91±0.04 pmole和0.08±0.1, 0.05±0.02, 0.1±0.14 pmole,膽鹽依賴性脂肪酶的細胞內攝取量隨濃度增加而增加;而過氧化酶則否,僅能結合停留在Caco-2細胞表面。Caco-2穿胞運輸實驗結果顯示,膽鹽依賴性脂肪酶和過氧化酶的穿胞運輸和Papp為分別為1.39±0.11 pmole, 6.53±0.55*10-6 (cm/s) 和1.69±0.41 pmole, 7.88±1.88*10-6 (cm/s),其總量和速率是相近的,但穿胞運輸後具有酵素活性的膽鹽依賴性脂肪酶為131.12±36.62 fmole,佔其穿胞運輸總量的10%,並沒有偵測到任何過氧化酶之酵素活性。
以雙反應性化學連接試劑SPDP,將過氧化酶與膽鹽依賴性脂肪酶以共價鍵接合,並藉由在波長280 nm的吸光值和SDS-PAGE來分析合成之產物,實驗結果發現,膽鹽依賴性脂肪酶-過氧化酶接合體之產物以非單一特定 (heterogeneous) 的鍵結方式連接。給予相同酵素活性的膽鹽依賴性脂肪酶-過氧化酶接合體、膽鹽依賴性脂肪酶-過氧化酶混合物和過氧化酶進行Caco-2穿胞運輸試驗,利用酵素活性和西方墨點法 (Western blot) 分析其底部培養基,均無任何可被偵測到的HRP訊號。所合成的非單一特定膽鹽依賴性脂肪酶-過氧化酶接合體無法攜帶過氧化酶經由穿胞運輸至Caco-2細胞的另一端。
綜和所有實驗結果,除了建立膽鹽依賴性脂肪酶的純化流程之外,膽鹽依賴性脂肪酶於Caco-2細胞的細胞內攝取和穿胞運輸後的酵素活性均優於過氧化酶,顯示其作為蛋白質藥物腸道載體之發展潛力。雖然本研究中合成的非單一特定的膽鹽依賴性脂肪酶-過氧化酶接合體無法攜帶氧化酶穿過Caco-2細胞,但在未來,可更進一步探討化學連接試劑之長度、蛋白藥物大小和特定單一性鍵結對於膽鹽依賴性脂肪酶作為蛋白質藥物腸道載體穿胞運輸效率之影響。
zh_TW
dc.description.abstractRecombinant insulin, the first commercially available therapeutic product, was approved by FDA in 1982. Since then, more and more proteins or peptides are the products of DNA recombinant technology and applied in pharmacotherapeutics to treat various diseases of cancers, blood dyscrasia, and infections, etc. Most of them are administered by injection which causes patients’ inconvenience and non-compliance. Oral delivery of biological therapeutics may be another alternative solution of these problems. Although oral administration of bioactive therapeutics is very attractive, there are some limitations of oral route, such as enzymatic degradation, poor absorption and short plasma half-life.
Bile-salt dependent lipase (BSDL, EC 3.1.1.13) is synthesized in the pancreas and secreted into intestine to digest the dietary lipids. Recently, BSDL was reported the ability to across the intestinal cell monolayer by receptor-mediated transcytosis without degradation and maintained its enzyme acticity. Therefore, the specific aims of this study would like to confirm the specific interaction between BSDL and intestinal cells. In addition, conjugate the the BSDL and model protein drug by chemical covalent bond and evaluate the possibility of BSDL as a protein drug carrier in the intestine.
In our study, BSDL was collected and purified from the cultured medium of rat pancreatic epitheial cell line AR42J and human intestinal cell line, Caco-2, was used as our in vitro model to assess the transport of BSDL into the intstine. AR42J cells were maintained in medium containing 10% fetal bovine serum (FBS) under normal condition. When cells reached the confluence, the medium was changed to the serum free medium in order to simplify the downstream purification. Two different purification methods were used. Method 1: the AR42J cultured medium was concentrated by the TFF ultrafiltration system and purified by Sephacry® S-200 (size exclusion) resins. The specific activity of BSDL was 314-fold increase from 0.15 to 47.13 Units/mg. After the serial purification processes, the recovery rate was nearly 67.32% and the purity of the purified BSDL was about 90% by image intensity analysis of SDS-PAGE. Method 2: The cultured medium was collected and applied to the Q-sepharose® fast flow (anion-exchange) column and subsequently to the Sephacry® S-200 (size exclusion) resins. The specific activity of BSDL was 117-fold increase from 0.15 to 17.15 Units/mg. After the serial purification processes, the recovery rate was 41% and the purity of the purified BSDL was 90%~95%.
BSDL and negative control, horseradish peroxidase (HRP), were incubated, respectively, with Caco-2 cells grown on 24-well plate. At 0.1 ~ 1 μM concentrations, the intracellular uptake amounts of BSDL and HRP were -0.03±0.09, 1.23±0.21, 1.91±0.04 pmole and 0.08±0.1, 0.05±0.02, 0.1±0.14 pmole. The amount of intracellular uptake of BSDL was increased in a concentration-dependent manner but that of HRP was not. 0.3 μM BSDL and HRP were added at the apical side of Caco-2 monolayer grown on the transwell and medium from the basolateral side were collected and analyzed. After six hours incubation, the transcytosis amounts and Papp of BSDL and was 1.39±0.11 pmole, 6.53±0.55*10-6 (cm/s), and that of HRP was 1.69±0.41 pmole, 7.88±1.88*10-6 (cm/s). However, only transcytosed BSDL processed enzyme activity, but the enzyme activity of HRP was not detectable.
BSDL and HRP were conjugated by bi-functional crosslinker SPDP and the synthesized product was analyzed by the absorbace at 280 nm and SDS-PAGE. It was found that BSDL-HRP was heterogeneous conjugate. Dosed the same enzyme activity of BSDL-HRP conjugate, BSDL-HRP mixture and HRP alone to the Caco-2 monolayer for the transport assay and the medium from the basolateral side was collected and analyzed by the enzyme activity assay and Western blot. However, there was no any detectable signal of HRP. The synthesized heterogeneous BSDL-HRP conjugate did not carry HRP to the other side of Caco-2 monolayer in this stidy.
From our experiment results, besides the establishment of model of BSDL purification, the intracellular uptake and specificity of BSDL to the Caco-2 cells are better than that of HRP. It indicated the promising potential of BSDL as the protein carrier in the intestine. Although the synthesized heterogeneous BSDL-HRP conjugate did not carry HRP to the other side of Caco-2 monolayer, the effects of length of crosslinker, molecular weight of protein drug and homogeneous conjugation on the BSDL as the protein drug carrier in the intestine should be further investigated in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:28:50Z (GMT). No. of bitstreams: 1
ntu-97-R95423017-1.pdf: 1670297 bytes, checksum: b32a6c84f5eaead8b8a3f3a7c4f5f2df (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents圖目錄 III
表目錄 IV
中文摘要 V
Abstract VIII
第一章 緒論 1
1.1. 蛋白質藥物的發展 1
1.2. 蛋白質藥物口服給藥的困難 3
1.3. 蛋白質藥物口服給藥的策略 3
1.3.1. 蛋白質藥物的劑型修飾 3
1.3.2. 蛋白質藥物的修飾 4
1.4. 膽鹽依賴性脂肪酶的背景 6
1.4.1. 膽鹽依賴性脂肪酶與腸道細胞的交互作用 6
1.4.2. 膽鹽依賴性脂肪酶的基因 7
1.4.3. 表現膽鹽依賴性脂肪酶的組織 8
1.4.4. 膽鹽依賴性脂肪酶的異構物 (isoforms) 8
1.4.5. 胰臟分泌膽鹽依賴性脂肪酶之過程 10
第二章 實驗目的 13
第三章 實驗材料與方法 14
3.1. 實驗材料 14
3.2. 細胞培養 15
3.3. 膽鹽依賴性脂肪酶的純化 16
3.4. 膽鹽依賴性脂肪酶酵素活性測試 18
3.5. 十二烷基硫酸鈉-聚丙烯醯胺膠體電泳 19
3.6. Coomassie Brilliant Blue膠片染色法 20
3.7. 蛋白質轉漬 (protein transfer) 20
3.8. 免疫呈色 (immunoblotting) 20
3.9. 125I同位素標記蛋白 21
3.10. 蛋白質濃度測定 22
3.11. 過氧化酶酵素活性測試 22
3.12. 腸道細胞對膽鹽依賴性脂肪酶和過氧化酶的攝取 (uptake) 及結合 (binding) 試驗 22
3.13. 穿胞運輸試驗 (transport assay) 23
3.14. 連接過氧化酶和膽鹽依賴性脂肪酶 23
3.15. 細胞結合和攝取專一性試驗 24
3.16. 其他試劑和緩衝液 24
3.17. 資料統計分析 26
第四章 實驗結果 27
4.1. 膽鹽依賴性脂肪酶的純化 27
4.2. 125I同位素標記過氧化酶和膽鹽依賴性脂肪酶 28
4.3. 過氧化酶和膽鹽依賴性脂肪酶的攝取和結合試驗 28
4.4. 過氧化酶和膽鹽依賴性脂肪酶於腸道細胞的穿胞運輸試驗 29
4.5. 連接過氧化酶和膽鹽依賴性脂肪酶 31
4.6. 過氧化酶-膽鹽依賴性脂肪酶接合體於腸道細胞的穿胞運輸試驗 31
4.7. 細胞結合攝取專一性試驗 32
第五章 討論 34
5.1. 膽鹽依賴性脂肪酶的純化 34
5.2. 結合 (Binding)、攝取 (Uptake) 和穿胞運輸 (transport) 試驗 36
5.3. 過氧化酶-膽鹽依賴性脂肪酶接合體於腸道細胞的穿胞運輸試驗 38
5.4. 膽鹽依賴性脂肪酶作為蛋白質藥物腸道載體之發展潛力 40
5.5. 未來研究方向 41
5.5.1. 建立基因重組人類膽鹽依賴性脂肪酶 41
5.5.2. 比較人類和大鼠膽鹽依賴性脂肪酶之穿胞運輸效率 41
5.5.3. 鑑別膽鹽依賴性脂肪酶中負責穿胞運輸之胜肽片段 41
第六章 結論 43
第七章 參考文獻 77
dc.language.isozh-TW
dc.title膽鹽依賴性脂肪酶的純化及其與人類腸道細胞株Caco-2之交互作用zh_TW
dc.titlePurification of bile-salt dependent lipase (BSDL) and its interaction with human intestinal cell line Caco-2en
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林文貞,許麗卿,余佳慧
dc.subject.keyword膽鹽依賴性脂肪&#37238,過氧化&#37238,蛋白質純化,細胞結合和攝取試驗,穿胞運輸試驗,蛋白質藥物載體,蛋白接合體,zh_TW
dc.subject.keywordbile-salt dependent lipase (BSDL),horseradish peroxidase (HRP),receptor-mediated transcytosis,protein purification,cell binding,uptake and transport asaay,protein drug carrier,protein conjugation,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2009-01-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved