請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41689完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
| dc.contributor.author | Tsung-Ju Wu | en |
| dc.contributor.author | 吳宗儒 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:27:44Z | - |
| dc.date.available | 2011-02-03 | |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-21 | |
| dc.identifier.citation | [1] D. Saslow, C. Boetes, W. Burke, S. Harms, M. O. Leach, C. D. Lehman, E. Morris, E. Pisano, M. Schnall, S. Sener, R. A. Smith, E. Warner, M. Yaffe, K. S. Andrews, and C. A. Russell, 'American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography,' Ca-a Cancer Journal for Clinicians, vol. 57, pp. 75-89, 2007.
[2] R. Smith, V. Cokkinides, and O. W. Brauley, 'Cancer screening in the United States, 2008: A review of current American Cancer Society guidelines and cancer screening issues,' Ca-a Cancer Journal for Clinicians, vol. 58, pp. 161-179, 2008. [3] A. C. Society, Cancer Facts & Figures 2008. Atlanta: American Cancer Society, 2008. [4] E. D. Pisano, R. E. Hendrick, M. J. Yaffe, J. K. Baum, S. Acharyya, J. B. Cormack, L. A. Hanna, E. F. Conant, L. L. Fajardo, L. W. Bassett, C. J. D'Orsi, R. A. Jong, M. Rebner, A. N. A. Tosteson, C. A. Gatsonis, and D. I. Grp, 'Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST,' Radiology, vol. 246, pp. 376-383, 2008. [5] S. Schrading and C. K. Kuhl, 'Mammographic, US, and MR imaging phenotypes of familial breast cancer,' Radiology, vol. 246, pp. 58-70, 2008. [6] S. Raza, S. A. Chikarmane, S. S. Neilsen, L. M. Zorn, and R. L. Birdwell, 'BI-RADS 3, 4, and 5 lesions: value of US in management--follow-up and outcome,' Radiology, vol. 248, pp. 773-81, Sep 2008. [7] S. E. Harms, D. P. Flamig, K. L. Hesley, M. D. Meiches, R. A. Jensen, W. P. Evans, D. A. Savino, and R. V. Wells, 'MR imaging of the breast with rotating delivery of excitation off resonance: Clinical experience with pathologic correlation,' Radiology, vol. 187, pp. 493-501, 1993. [8] B. Bone, Z. Pentek, L. Perbeck, and B. Veress, 'Diagnostic accuracy of mammography and contrast-enhanced MR imaging in 238 histologically verified breast lesions,' Acta Radiologica, vol. 38, pp. 489-496, 1997. [9] C. K. Kuhl, R. K. Schmutzler, C. C. Leutner, A. Kempe, E. Wardelmann, A. Hocke, M. Maringa, U. Pfeifer, D. Krebs, and H. H. Schild, 'Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: Preliminary results,' Radiology, vol. 215, pp. 267-279, 2000. [10] S. K. Shah, S. K. Shah, and K. V. Greatrex, 'Current role of magnetic resonance imaging in breast imaging: A primer for the primary care physician,' Journal of the American Board of Family Practice, vol. 18, pp. 478-490, Nov-Dec 2005. [11] C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano, L. Hanna, S. Peacock, S. F. Smazal, D. D. Maki, T. B. Julian, E. R. DePeri, D. A. Bluemke, M. D. Schnall, T. Julian, W. Poller, K. Schilling, C. Neal, L. Wichterman, P. Seifert, M. O'Loughlin, D. Bluemke, S. Kawamoto, E. DePeri, E. Hendrick, J. Wolfman, S. Smazal, D. Thickman, R. Korn, D. Maki, C. Whitfill, A. Cook, P. Causer, V. Rao, C. Piccoli, E. Ferris, S. Harms, C. Kuhl, N. DeBruhl, N. Hylton, M. Mahoney, E. Pisano, M. Schnall, S. Weinstein, S. Keesara, P. Weatherall, G. DeAngelis, C. Lehman, T. Li, R. Soulen, and A. T. I. Grp, 'MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer,' New England Journal of Medicine, vol. 356, pp. 1295-1303, 2007. [12] W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, K. Boparai, and A. Investigators, 'Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,' Jama-Journal of the American Medical Association, vol. 299, pp. 2151-2163, 2008. [13] U. Fischer, L. Kopka, and E. Grabbe, 'Breast carcinoma: Effect of preoperative contrast-enhanced MR imaging on the therapeutic approach,' Radiology, vol. 213, pp. 881-888, 1999. [14] W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, 'Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,' Radiology, vol. 233, pp. 830-849, 2004. [15] D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Kobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, 'Magnetic resonance imaging of the breast prior to biopsy,' Jama-Journal of the American Medical Association, vol. 292, pp. 2735-2742, 2004. [16] L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, 'Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system,' J Magn Reson Imaging, vol. 25, pp. 89-95, Jan. 2007. [17] W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, pp. 562-571, Sep. 2007. [18] R. M. Haralick, Shanmuga.K, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [19] W. J. Chen, M. L. Giger, U. Bick, and G. M. Newstead, 'Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,' Medical Physics, vol. 33, pp. 2878-2887, 2006. [20] J. K. Udupa and S. Samarasekera, 'Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation,' Graphical Models and Image Processing, vol. 58, pp. 246-261, May 1996. [21] P. K. Saha, J. K. Udupa, and D. Odhner, 'Scale-based fuzzy connected image segmentation: Theory, algorithms, and validation,' Computer Vision and Image Understanding, vol. 77, pp. 145-174, Feb. 2000. [22] E. Morris and L. Liberman, Breast MRI: Diagnosis and intervention. New York, NY: Springer, 2005. [23] A. K. Jain, Fundamentals of Digital Image Processing New York, 1989. [24] J. A. Sethian, in Level Set Methods and Fast Marching Methods, 2nd Ed. ed, 1999. [25] L. G. Shapiro and G. C. Stockman, Computer Vision. Upper Saddle River, NJ: Prentice Hall, 2001. [26] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, pp. 543-554, 2008. [27] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov. 2007. [28] R. M. Haralick, 'Statistical and Structural Approaches to Texture,' Proceedings of the IEEE, vol. 67, pp. 786-804, 1979. [29] R. W. Conners, M. M. Trivedi, and C. A. Harlow, 'Segmentation of a High-Resolution Urban Scene Using Texture Operators,' Computer Vision Graphics and Image Processing, vol. 25, pp. 273-310, 1984. [30] K. F. Mulchrone and K. R. Choudhury, 'Fitting an ellipse to an arbitrary shape: implications for strain analysis,' Journal of Structural Geology, vol. 26, pp. 143-153, 2004. [31] B. Jahne, Digital Image Processing: Concepts, Algorithms, and Scientific Applications. Berlin, 1997. [32] Q. Zhu and L.-K. Poh, 'A transformation-invariant recursive subdivision method for shape analysis,' in Pattern Recognition, 1988., 9th International Conference on, 1988, pp. 833-835 vol.2. [33] A. Ulanovsky and G. Prohl, 'A practical method for assessment of dose conversion coefficients for aquatic biota,' Radiat Environ Biophys, vol. 45, pp. 203-214, Sep. 2006. [34] A. Field, Discovering Statistics Using SPSS, 2nd ed. London: SAGE Publications, 2005. [35] Y. Xiao, J. Hua, and E. R. Dougherty, 'Quantification of the impact of feature selection on the variance of cross-validation error estimation,' EURASIP J Bioinform Syst Biol, p. 16354, 2007. [36] J. F. a. K. Kenney, E. S., 'The Chi-Square Distribution,' in Mathematics of Statistics, 2nd ed, 1951. [37] R. C. Sprinthall, Basic Statistical Analysis, 8th ed. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41689 | - |
| dc.description.abstract | 過去數年來,乳癌一直是全球女性主要的死因,但是其治癒的可能性,也隨著早期發現以及完善的醫治而提高,美國癌症協會也建議婦女需每年定期作乳房檢查,以便早期發現可疑的腫塊;而截至目前為止,電腦輔助診斷系統已經不只可以單純提供所選定腫瘤的資訊,更可以藉此區分腫瘤的良惡性,因此,對於腫瘤的切片檢查次數就可以相對的減低。一般來說,腫瘤的型態可以反映出腫瘤的良惡性,因此在這篇論文內,使用了三維高解析度的核磁共振攝影影像來進行腫瘤的診斷,我們使用數種有關型態的特徵值,來描述所選定的腫瘤,更進一步地,我們亦利用腫瘤的形狀建立一個三維的橢球模型,藉由比較此模型與腫瘤的異同點,我們亦定義了許多描述腫瘤型態的特徵值;除此之外,我們亦利用灰階值共生矩陣對腫瘤進行紋理的分析,並把其和之前提及的腫瘤型態分析互相比較。在我們的實驗裡,我們對總計包含95個經過病理學驗證的腫瘤,重複以不同的特徵值種類測試,其中包含44個良性病例以及51個惡形病例,根據實驗結果,我們發現與腫瘤型態相關的特徵值比起紋理的特徵值,更能區分出腫瘤的良惡性,而我們最後討論選定的數種特徵值,能達到準確性88.42%、敏感性88.24%以及特異性88.64%。 | zh_TW |
| dc.description.abstract | In the past years, the breast cancer is globally the major cause of the death for women. But the curability of the breast cancer can be raised if such a tumor can be found early and treat correctly. American Cancer Society has also suggested that women should take the breast examination annually to achieve the early detection of the suspicious tumors. Recently the computer-aided diagnosis systems can help radiologists not only to render the information of the tumor but also to different the malignant tumors from benign ones. Hence the demand of the breast biopsy of the found tumors can be further reduced. In this paper, the three dimensional (3-D) high resolution magnetic resonance imaging (MRI) is used to diagnose the breast tumors. In general, the morphology can reflect the malignancy or benignancy of a tumor. Several conventional shape features are used to extract the shape information. Furthermore, a fitting ellipsoid is built by the tumor contour and then some morphological features are proposed by comparing the tumor contour with its corresponding ellipsoid. Besides, the 3-D texture information based on the grey level co-occurrence matrix is also considered a diagnosis feature and also be used in this paper for a comparison. In our experiments, 95 pathology-proven cases, which contain 44 benign tumors and 51 malignant ones, are used to test the accuracy of several different feature categories and our proposed computer-aided system. From the experimental results, we could find that the morphological features have better performance than the texture features. Moreover, the proposed 3-D morphological features could achieve a high performance with the accuracy, sensitivity, and specificity being 88.42%, 88.24%, and 88.64%, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:27:44Z (GMT). No. of bitstreams: 1 ntu-98-R95922095-1.pdf: 1421840 bytes, checksum: e2e0c92720547cbd0fd993027b3d396d (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘 要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 The Computer-Aided Diagnosis of Breast Cancer for MRI 4 2.2 Contrast-enhanced Breast Magnetic Resonance Image 6 Chapter 3 Fuzzy Segmentation and Tumor Analysis using Texture and Morphology 8 3.1 Image Pre-processing operations 8 3.2 Hybrid Segmentation Method 13 3.3 Features Extraction 16 3.3.1 Texture-based Features 16 3.3.2 Shape Features 18 3.3.3 Ellipsoid Fitting Features 19 Chapter 4 Experimental Results and Discussion 24 4.1 Statistic Analysis and Experiment Results 24 4.2 Discussions 29 Chapter 5 Conclusion and Future Works 39 References 41 | |
| dc.language.iso | en | |
| dc.subject | 型態學 | zh_TW |
| dc.subject | 核磁共振攝影 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | 三度空間 | zh_TW |
| dc.subject | MRI | en |
| dc.subject | morphology | en |
| dc.subject | 3-D | en |
| dc.subject | computer-aided diagnosis (CAD) | en |
| dc.title | 應用三維型態分析的乳房MRI電腦輔助診斷 | zh_TW |
| dc.title | Computer-aided Diagnosis of Breast MRI Using 3-D Morphology Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張允中(Yun-Chung Chang),黃俊升(Chun-Sheng Huang) | |
| dc.subject.keyword | 核磁共振攝影,電腦輔助診斷,三度空間,型態學, | zh_TW |
| dc.subject.keyword | MRI,computer-aided diagnosis (CAD),3-D,morphology, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
