Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平
dc.contributor.authorPei-Ying Luen
dc.contributor.author呂沛穎zh_TW
dc.date.accessioned2021-06-15T00:26:27Z-
dc.date.available2010-03-06
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-22
dc.identifier.citation1. 朱佩文. 1998. 花生簇葉病病原菌質體 dnaK 和 dnaJ 基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。
2. 朱俞蓉. 1998. 花生簇葉病病原菌質體 recA 基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
3. 林翠淳. 1996. 植物菌質體廣效型PCR引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。
4. 紀凱齡. 2003. 花生簇葉病菌質體 polC 基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
5. 莊景光. 2000. 花生簇葉病病原菌質體gyrB和gyrA基因之選殖. 國立台灣大學植物病理學研究所碩士論文。
6. 陳紹寬. 1997. 花生簇葉病菌質體 RNA 聚合酵素Sigma Factor基因之選殖及分析.國立台灣大學植物病蟲害學研究所碩士論文。
7. 黃俊霖. 1996. 絲瓜簇葉病植物菌質體可能的 ABC 轉運系統基因之分離及特性分析. 國立台灣大學植物學研究所碩士論文。
8. 鄧靜雯. 1999. 花生簇葉病病原菌質體 RNA 聚合酵素β 亞單位基因之選殖. 國立台灣大學植物病蟲害學研究所碩士論文。
9. 魏慧珍.2000. 以逢機定序方式選殖花生簇葉病菌之質體及插入序列. 國立台灣大學植物病理與微生物學系研究所碩士論文。
10. Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687–703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
11. Ahel, D., Slade, D., Mocibob, M., Söll, D., and Weygand-Durasevic, I. 2005. Selective inhibition of divergent seryl-tRNA synthetase by serine analogues. FEBS Lett. 579: 4344–4348.
12. Allmang, c., and Krol, A. 2006. Selenoprotein synthesis: UGA does not end the story. Biochimie. 88: 1561–1571.
13. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology. 147: 571–580.
14. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22: 195–201.
15. Asahara, Y., Atsuta, K., Motohashi, K., Taguchi, H., Yohda, M., and Yoshida, M. 2000. FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues. J. Biochem. 127: 931–937.
16. Assev, L. V., Levandovskaya, A. A., Tchufistova, L. S., Scaptsova, N. V., and Boni, I. 2008. A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo. RNA. 14: 1882–1894.
17. Bai, X., Zhang, J., Holford, I. R., and Hogenhout, S. A. 2004. Comparative genomics identifies genes shared by distantly related insect-transmitted plant pathogenic mollicutes. FEMS Microbiol. Lett. 235: 249–258.
18. Begg, K. J., Tomoyasu, T., Donachie, W. D., Khattar, M., Niki, H., Yamanaka, K., Hiraga, S., and Ogura, T. 1992. Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J. Bacteriol. 174: 2416–2417.
19. Belrhali, H., Yaremchuk, A., Tukalo, M., Larsen, K., Berthet-Colominas, C., Leberman, R., Beijer, B., Sproat, B., Als-Nielsen, J., Grubel, G. et al. 1994. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science. 263: 1432–1436.
20. Beuning, P. J., and Musier-Forsyth, K. 1999. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers. 52: 1–28.
21. Bilokapic, S., Korencic, D., Söll, D., and Weygand-Durasevic, I. 2004. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur. J. Biochem. 271: 694–702.
22. Bilokapic, S., Maier, T., Ahel, D., Gruic-Sovulj, I., Soll, D., Weygand-Durasevic, I., and Ban, N. 2006. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition.EMBO. 25: 2498–2509.
23. Bilokapic, S., Plavec, J. R., Ban, N., and Weygand-Durasevic, I. 2008. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. FEBS J. 275: 2831–2844.
24. Biou, V., Yaremchuk, A., Tukalo, M., and Cusack, S. 1994. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science. 263: 1404–1410.
25. Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., and Kirkpatrick, B. C. 2001. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology. 147: 571–580.
26. Cimerman, A., Arnaud, G., and Foissac, X. 2006. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl. Environ. Microbiol. 72: 3274–3283.
27. Borel, F., Vincent, C., Leberman, R., and Härtlein, M. 1994. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Nucleic Acids Res. 22: 2963–2969.
28. Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology. 66: 598–607.
29. Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology. 68: 1733–1737.
30. Brodersen, D. E., Clemons, W. M., Jr, Carter, A. P., Wimberly, B. T., and Ramakrishnan, V. 2002. Crystal structure of 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J. Mol. Biol. 316: 725–768.
31. Brouwer, R. W., Kuipers, O. P., and van Hijum, S. A. 2008. The relative value of operon predictions. Brief. Bioinform. 9: 367–75.
32. Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471–6478.
33. Condon, C., Grunberg-Manago, M., and Putzer, H. 1996. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis. Biochimie. 78: 381–389.
34. Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L., and Driscoll, D. M. 2000.A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19: 306–14.
35. Cusacj, S., Berthet-Colominas, C., Härtlein, M., Nassar, N., and Leberman, R. 1990. A second class of thynthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5Å. Nature. 347: 249–255.
36. Cusack, S., Härtlein, M., and Leberman, R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19: 3489–3498.
37. Dam, P., Olman, V., Harris, K., Su, Z., and Xu, Y. 2007. Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res. 35: 288–298.
38. Das, A., and Ljungdahl, L. G. 1997. Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J. Bacteriol. 179: 3746–3755.
39. Denes, A. S., and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189–196.
40. Deuerling, E., Mogk, A., Richter, C., Purucker, M., and Schumann, W. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23: 921–933.
41. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259–266.
42. Dutca, L. M., and Culver, G. M. 2008. Assembly of the 5’ and 3’ minor domain of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J. Mol. Biol. 376: 92–208.
43. Feng, Liang., Sheppard, K., Namgoong, S., Ambrogelly, A., Polycarpo, C., Randau, L., Tumbula-Hansen, D., and Söll, D. 2004. RNA Biol. 1: 16–20.
44. Ganichkin, O. M., Xu, X. M., Carlson, B. A., Mix, H., Hatfield, D. L., Gladyshev, V. N., and Wahl, M. C. 2008. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. J. Biol. Chem. 283: 5849–65.
45. Garg, R.P., Qian, X. L., Alemany, L. B., Moran, S., and Parry, R. J. 2007. Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc. Natl. Acad. Sci. USA. 18: 6543–6547.
46. Gautsch, J. W., and Wullf, D. L. 1974. Fine structure mapping, complementation, and physiology of Escherichia coli hfl mutants. Genetics 77: 435–448.
47. Gollnick, P., and Babitzke, P. 2002. Transcription attenuation. Biochim. Biophys. Acta. 1577: 240–250.
48. Granger, L. L., O'Hara, E. B., Wang, R. F., Meffen, F. V., Armstrong, K., Yancey, S. D., Babitzke, P., and Kushner, S. R. 1998. The Escherichia coli mrsC gene is required for cell growth and mRNA decay. J. Bacteriol. 180: 1920–1928.
49. Guex, N., and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis. 18: 2714–2723.
50. Gundersen, D. E., and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35: 144–151.
51. Härtlein, M., and Cusack, S. 1995. Structure, fuction and evolution of seryl-tRNA synthetase: implications for the evolution of aminoacyl-tRNA synthetase and gebetic code. J. Mol. Evol. 40: 519–530.
52. Henkin, T. M., Glass, B. L., and Grundy, F. J. 1992. Analysis of the Bacillus subtilis tyrS gene: conservation of regulatory sequence in multiple tRNA synthetase gene. J. Bacteriol. 174: 3928–3935.
53. Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504–506.
54. IRPCM Phytoplasma/ Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245–1255.
55. Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267–275.
56. Jomantiene, R., Davis, R. E., Valiunas, D., Alminaite, A. and Staniulis, J. 2002. New group 16SrIII phytoplasma lineages in Lithuania exhibit interoperon sequence heterogeneity. Eur. J. Plant Pathol. 108: 507–517.
57. Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H., Sawayanagi, T., Tsuchizaki, T., Miyata, S., Ugaki, M., and Namba, S. 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant- microbe Interact. 14: 1043–1050.
58. Katz, C., and Ron, E. Z. 2008. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J. Bacteriol. 190: 7117–7122.
59. Korencic, D., Polycarpo, C., Weygand-Durasevic, I. and Söll, D. 2004. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J. Biol. Chem. 279: 48780–48786.
60. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemuller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics.
61. Lawrence, J. 1999. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. 9: 642–648.
62. Lee, I.-M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006a. ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593–1597.
63. Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I.-M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153–1169.
64. Lee, I.-M., Hammond, R. W., Davis, R. E., and Gundersen, D. E. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology. 83: 834–842.
65. Lee, I.-M., Zhao, Y., and Bottner, K. D. 2006b. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes. 20: 87–91.
66. Lemhard, B., Orellana, O., Ibba, M., and Weygand-Durasevic, I. 1999. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res. 1999. 27: 721–729.
67. Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59–68.
68. Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128–2130.
69. Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606–2611.
70. Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant-pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682–686.
71. Martini, M., Lee, I.-M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037–2051.
72. Matsuzawa, H., Ushiyama, S., Koyama, Y., and Ohta, T. 1984. Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia, and Ib: defect in generation of the electrochemical proton gradient. J. Bacteriol. 160: 733–739.
73. McCarthy, J. E. G., Gerstel, G., Surin, B., Wiedemann, U., and Ziemke, P. 1991. Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability. Mol. Microbiol. 5: 2447–2458.
74. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C. Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemuller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Pages 545–640 in: R. F. Whitcomb and J. G. Tully, eds. The Mycoplasmas, Vol. V. Academic Press, San Diego, CA.
75. Miyata, S., Furuki, K., Oshima, K., Sawayanagi, T., Nishigawa, H., Kakizawa, S., Jung, H. Y., Ugaki, M., and Namba, S. 2002. Complete nucleotide sequence of the S10-spc operon of phytoplasma: gene organization and genetic code resemble those of Bacillus subtilis. DNA Cell Biol. 21: 527–534.
76. Moreno-Hagelsieb, G., and Collado-Vides, J. 2002.A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatic. 18: 329–336.
77. Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186–187.
78. Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133–147.
79. Nesin, M., Lupski, J. R., and Godson G. N. 1988. Role of the 5’ upstream sequence and tandem promoters in regulation of the rpsU-dnaG-rpoD macromolecular synthesis operon. J. Bacteriol. 170: 5759–5764.
80. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27–29.
81. Pál, C., and Hurst, L. D. 2004. Evidence against the selfish operon theory. Trends Genet. 20: 232–234.
82. Ryckelynck, M., Giegé, R., and Frugier, M. 2005. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie. 87:835–845.
83. Santana, M., Ionescu, M. S., Vertes, A., Longin, R., Kunst, F., Danchin, A., and Glaser, P. 1994. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J. Bacteriol. 176: 6802–6811.
84. Santos, D., and Almeida, D. F. 1975. Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J. Bacteriol. 124: 1502–1507.
85. Schäferkordt, S., and Chakraborty, T.1997. Identification, cloning, and characterization of the lma operon, whose gene products are unique to Listeria monocytogenes. J. Bacteriol. 179: 2707–2716.
86. Schlax, P. J., and Woehunsky, D. J. 2003. Translational repression mechanisms in prokaryotes. Mol. Microbiol. 48: 1157–1169.
87. Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemüller, E. 1993. Classification of plant- pathogenic mycroplasma-like organisms using restriction- site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519–527
88. Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381–3389.
89. Schneider, B., and Seemüller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409–3412.
90. Schneider, B., Gibb, K. S., and Seemüller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology. 143: 3381–3389.
91. Schneider, B., Seemüller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369–380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin, and J. G. Tully eds. Academic Press, San Diego, CA.
92. Schuwirth, B. S. Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. 2005. Structure of the bacterial ribosome at 3.5Å resolution. Science. 310: 827–834.
93. Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275–287.
94. Seemüller, E., Marcone, C., Lauer, U., Ragozzino. A., and Göschl , M. 1998. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3–26.
95. Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I.-M., Nuss, D. L., and Davis, R. E. (2006). NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193–201.
96. Shotland, Y., Teff, D., Koby, S., Kobiler, O., and Oppenheim, A. B. 2000. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. J. Mol. Biol. 299: 953–964.
97. Schumann, W. 1999. FtsH – a single chain charonin. FEMS. Microbiol. Rev. 23: 1–11.
98. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381–3385.
99. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenz, K.-H., Seemu¨ ller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of 16S–23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988–2993.
100. Stadtman,T. C.1996. Selenocysteine. Ann. Rev. Biochem. 65: 83–100.
101. Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842.
102. Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of 'Candidatus Phytoplasma australiense' (subgrouptuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190: 3979–91.
103. Vasil'eva, I. A., and Moor, N. A. 2007. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition.Biochemistry (Mosc). 72:247–263.
104. Versalovic, J., Koeuth, T., Britton, R., Geszvain, K., and Lupski, J. R. 1993. Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria. 8: 343–355.
105. Villegas, A., and Kropinski, M. A. 2008. An analysis of initiation codon utilization in the Domain Bacteria-concerns about the quality of bacterial genome annotation. Microbiology. 154: 2559–2561.
106. Wang, R. F., O’Hara, E. B. Aldea, M., Bargmann, C. I., Gromley, H., and Kushner, S. R. 1998. Escherichia coli mrsC is a allele of hflB, encoding a membrane-associated ATPase and protease that required for mRNA decay. J. Bacteriol. 180: 1929–1938.
107. Wei, W., Davis, R. E., Lee, I.-M. and Zhao, Y. 2007. Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855–1867.
108. Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368–2377.
109. Weygand-Durasević, I., Lenhard, B., Filipić, S., and Söll, D. 1996. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity. J. Biol. Chem. 271: 2455–2461.
110. Weygand-Durasevic, I., and Mocibob, M. 2008. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch. Biochem. Biophys. 470: 129–138.
111. Woese, C. R., Olsen, G. J., Ibba, M., and Söll, D 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev. 64: 202–36.
112. Wullf, D. L., and Rosenberg, M. 1983. Establishment of repressor synthesis. In: Lambda II (Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A., Eds.) pp. 53–73. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,NY.
113. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 82: 2306–2309.
114. Yang, I. L., and Wu, S. Y. 1990. The latent period of peanut witches’ broom agent in the vector Orosius orientalis. Jour. Agric. Res. China. 39: 204–207.
115. Yang, I. L. 1988. Witches’ broom diseases of sweet potato and peanut in Taiwan. Ph. D. Thesis. Hokkaido Univ. Japan.
116. Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144: 1257–1262.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41659-
dc.description.abstract本研究中以建構與篩選花生簇葉病菌質體次基因體基因庫 (subgenomic library) 之策略,針對其 serS 基因進行選殖與分析。利用本研究室先前獲得之選殖株 clone 22 選殖片段中所含有之部分花生簇葉病菌質體 serS 基因序列,透過聚合酵素連鎖反應 (PCR) 進行探針 WS2-5 之製備,並以該探針應用於由限制酵素 SpeI 構築之次基因體基因庫之篩選,獲得一選殖株 lib_SpeI_4-19, 由於該選殖株之選殖片段中之 serS 基因缺乏 5’ 端序列,故進一步以該選殖株之選殖片段序列,利用 PCR 進行探針 WS8-6 之製備,並將其應用於由 HindIII 構築之次基因體基因庫之篩選,並獲得一選殖株 lib_HindIII_2-36。經序列整合與分析,得知在該二選殖株之選殖片段中包含有兩個完整之開放式讀取架 (open reading frame, ORF),與兩個不完整之 ORFs,依其由 5’ 端至 3’ 端之順序分別將之命名為 ORF1 至 ORF4。將各 ORFs 所推衍出之胺基酸序列進行比對,結果顯示完整之 ORF2 與 ORF3 分別與其他物種之 serS 基因與 hflB 基因具相似性;ORF1 則與 rpsT 基因具有相似性;而 ORF4 則無明確之比對結果,因此暫定其可能為一未知功能之假設性蛋白質 (hypothetical protein)。為獲得完整之 rpsT 基因,即由植物菌質體之 rpsT 之高保守性區域設計簡併性引子 (degenerate primer),並利用 PCR 之策略進行花生簇葉病菌質體 rpsT 基因之選殖,並獲得選殖株c_wsf6mr7_rpsT,選殖片段包含完整之 rpsT 基因。以軟體將各選殖株嵌入片段續接,遂獲得一 3,902 bp 花生簇葉病菌質體基因體之片段序列,由其 5’端至 3’ 端依序為 rpsT基因、serS 基因、hflB基因及一不完整之 ORF4。rpsT 基因之轉譯產物為組成核糖體之小次單元 30S subunit中之核糖體蛋白質 S20;serS 基因轉譯產物為絲胺基化 tRNA 合成酵素,兩者都參與於轉譯中,為蛋白質生合成之相關基因;hflB基因其轉譯產物為 ATP-dependent Zn metalloendoprotease,具有分解多種蛋白質之能力,在植物菌質體內為一高套組數基因,其保守性序列主要位於兩個功能性區塊中。以橫跨在 rpsT 與 serS 之基因間區域 (intergenic region) 兩側之兩組引子對,與橫跨在 serS 與 hlfB 之基因間區域兩側之一組引子對,進行反轉錄聚合酵素連鎖反應 (RT-PCR),皆可獲得 RT-PCR 增幅產物,經選殖與解序分析後,其與本研究中獲得之花生簇葉病菌質體之基因體片段序列 100% 吻合,顯示 rpsT、serS 與 hlfB 均能進行 RNA 表現,且均位於同一轉錄產物上,說明此三者可能位於同一多基因操縱組 (polycistronic operon) 內。zh_TW
dc.description.abstractTo investigate serS gene in peanut witches’-broom (PnWB) phytoplasma, subgenomic libraries of PnWB phytoplasma were constructed in this study. Clone lib_speI_4-19 was obtained from the PnWB phytoplasma SpeI-restriction subgenomic library by colony hybridization using PCR- amplified probe WS2-5 based on the partial sequence of serS gene of PnWB phytoplasma obtained in our previous study. To obtain the 5’ end sequence of serS, another probe WS8-6 was amplified based on the sequence of cloned fragment of lib_speI_4-19. Clone lib_HindIII_2-36 was then selected from the PnWB phytoplasma HindIII-restriction subgenomic library. Sequences of the cloned fragments of lib_speI_4-19 and lib_HindIII_2-36 were integrated and analyzed to reveal that the sequences may cotain four putative open reading frames (ORFs 1-4). The deduced amino acid sequences of ORF1, ORF2 and ORF3 showed homology with those of rpsT gene, serS gene and hflB gene, respectively. On the other hand, amino acid sequence of the ORF4 probably encodes a hypothetical protein with no significant homology to any known sequences. To clone complete rpsT gene, a degenerate PCR primer was designed according to the 5’ conserved region of phytoplasma rpsT gene, a clone c_wsf6mr7_rpsT with full length of rpsT gene was then obtained using PCR-based cloning strategy. The 3,902 bp genomic DNA sequence of PnWB phytoplasma was determined from the sequences of the cloned fragments of lib_speI_4-19, lib_HindIII_2-36 and c_wsf6mr7_rpsT using SeqMan sequence analysis program. The fragment contains full length of rpsT gene, serS gene, hflB gene and an incomplete ORF4 in order. The rpsT gene encodes a 30S subunit ribosomal protein S20. The serS gene encodes a seryl-tRNA synthetase with three highly conservative motifs. Both proteins were involved in translation and related to protein biosynthesis. The hflB gene encodes an ATP-dependent Zn metalloendoprotease of the AAA family (ATPases associated with diverse celluar activities) with two functional domains responsible for protein degradation. PCR fragments that spanned the rpsT-serS and serS-hflB intergenic region were amplified separately in reverse transcription-PCR (RT-PCR) using the total RNA prepared from PnWB-affected periwinkle as template, and the sequences of PCR products were identical to the corresponding sequences of the 3,902 bp PnWB phytoplasma genomic fragment. RT-PCR experiments indicate that the three genes are expressed as a single transcript, demonstrating that they constitute an operon.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:26:27Z (GMT). No. of bitstreams: 1
ntu-98-R95633005-1.pdf: 1885359 bytes, checksum: 2442a851fab2f9fa7b068f7a3f94897f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents論文口試委員審定書 II
誌謝 III
中文摘要 IV
英文摘要 VI
壹、前言 1
貳、前人研究 3
一、植物菌質體之發現與其植物病理學 (plant pathology) 3
二、植物菌質體之分群 5
三、植物菌質體之生物特性與其分子生物學上的研究 7
四、細菌之 serS 基因之研究及特性 8
(一) serS 基因及其蛋白質產物之特性 8
(二) serS 基因之調控機制 11
(三) serS 基因之演化 13
五、細菌之 rpsT 與 hflB 基因之研究及其特性 14
(一) rpsT 基因及其蛋白質產物之特性 14
(二) hflB 基因及其蛋白質產物之特性 15
參、材料與方法 18
一、研究材料來源與全 DNA (total DNA) 之純化 18
(一) 試驗植物來源及繁殖 18
(二) 健康及受花生簇葉病菌質體感染植物全 DNA (total DNA) 之純化 18
二、花生簇葉病菌質體 serS 基因與 hflB 基因之選殖與分析 19
(一) 花生簇葉病菌質體 serS 基因篩選用核酸探針之製備 19
1. 核酸探針片段序列之增幅與選殖 19
2. 核酸探針之標識 (labeling) 24
(二) 花生簇葉病菌質體次基因體基因庫 (subgenomic library) 之構築與篩選 25
1. 南方氏轉漬 (Southern blot) 及雜配反應 (hybridization) 25
2. 花生簇葉病菌質體次基因體基因庫之構築 27
3. 花生簇葉病菌質體次基因體基因庫之篩選 30
4. 轉形株重組質體特性分析 31
三、花生簇葉病菌質體 serS 基因 5’ 端與 5’ 端上游未轉譯區 (5’-UTR) 之選殖與分析 31
(一) 篩選用核酸探針之製備 32
(二) 次基因體基因庫之構築與篩選 32
四、serS上游基因 rpsT 之選殖與分析 32
(一) 聚合酵素連鎖反應 33
(二) 聚合酵素連鎖反應產物之選殖與分析 33
1. 聚合酵素連鎖反應產物之選殖 33
2. 重組質體之特性分析 33
五、花生簇葉病菌質體serS 基因、rpsT 基因與 hlfB 基因推衍蛋白質之結構預測 33
六、花生簇葉病菌質體 serS 基因之北方氏雜配反應 (Northern hybridization ) 分析 33
(一) 健康及罹病植物全 RNA 之純化 34
(二) 北方氏雜配反應 (Northern hybridization) 34
七、花生簇葉病菌質體 serS 基因轉錄 (transcription) 起始點之分析 35
(一) 反轉錄反應引子及聚合酵素連鎖反應引子對之設計 35
(二) 反轉錄聚合酵素連鎖反應 (reverse transcription PCR) 36
1. 以反轉錄 (reverse transcription) 反應進行serS 基因cDNA 之合成 36
2. 聚合酵素連鎖反應 37
(三) 反轉錄聚合酵素連鎖反應產物之選殖與分析 38
1. 反轉錄聚合酵素連鎖反應產物之選殖 38
2. 重組質體之特性分析 38
肆、結果 39
一、以日日春為宿主繁殖花生簇葉病菌質體及植物全DNA (total DNA) 之純化 39
二、花生簇葉病菌質體 serS 基因與 5’ 端上游未轉譯區之選殖 39
(一) serS 基因之選殖 39
1. 南方氏轉漬與雜配反應 39
2. SpeI 次基因體基因庫篩選 40
3. 選殖株lib_SpeI_4-19 之重組質體序列分析 40
(二) serS 基因5’ 端與 5’ 端上游未轉譯區之選殖 41
1. 南方氏雜配反應 41
2. HindIII 次基因體基因庫篩選 42
3. 選殖株lib_HindIII_2-36之重組質體序列分析 42
三、serS上游基因 rpsT 之選殖 43
(一) rpsT 基因之選殖 43
(二) 選殖株c_wsf6mr7_rpsT之重組質體序列分析 43
四、各選殖株之選殖片段序列整合與特性分析 44
五、花生簇葉病菌質體serS 基因、rpsT 基因與 hlfB 基因推衍蛋白質之結構分析 46
(一) serS 基因推衍蛋白質之結構分析 46
(二) rpsT 基因推衍蛋白質之結構分析 47
(三) hflB 基因推衍蛋白質之結構分析 47
六、花生簇葉病菌質體 serS 基因之RNA 表現分析 49
伍、討論 50
陸、參考文獻 60
柒、圖表 74
捌、附錄 114
dc.language.isozh-TW
dc.title花生簇葉病菌質體 rpsT, serS 與 hflB 基因之選殖與分析zh_TW
dc.titleCloning and Analysis of rpsT, serS and hflB Genes of Peanut Witches'-Broom Phytoplasmaen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曾國欽,何國傑,洪挺軒
dc.subject.keyword花生簇&#63854,病菌質體,次基因體基因庫,rpsT 基因,serS 基因,hflB 基因,zh_TW
dc.subject.keywordpeanut witches’-broom phytoplasma,subgenomic library,rpsT gene,,serS gene,hflB gene,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2009-01-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved