請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41622完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴喜美 | |
| dc.contributor.author | Chung-Yao Tsou | en |
| dc.contributor.author | 鄒仲堯 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:25:07Z | - |
| dc.date.available | 2011-02-03 | |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-01-22 | |
| dc.identifier.citation | 張海燕、丁玉、尹瑞卿、白雲峰 2007 脂肪酶酶活性的最新研究。生物學通報 42 (3),p.16-17。
AACC. 2000. Approved Method of the American Association of Cereal Chemists. AACC Inc., MN, USA. Aburto, J., Alric, I. and Borredon, E. 1999a. Preparation of long-chain esters of starch using fatty acid chlorides in the absence of solvent. Starch/Stärke 51: 132–135. Aburto, J., Alric, I., Thiebaud, S., Borredon, E., Bikiaris, D., Prinos, J. and Panayiotou C. 1999b. Synthesis, characterization and biodegradability of fatty-acid esters of amylose and starch. J. Appl. Polym. Sci. 74: 1440-1451. Aburto, J., Hamali, H., and Mouysset-Baziard, G. 2000. Free-solvent synthesis and properties of higher fatty esters of starch-Part 2. Starch-Starke. 51: 302-307. Adachi, S. and Kobayashi, T. 2005. Synthesis of esters by immobilized-lipase- catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. J. Biosci. Bioeng. 99(2): 87–94. Alhir, S., Markajis, S. and Chandan, R.1990. Lipase of Penicillium caseicolum. J. gric. Food Chem. 38, 598–601. Angellier, H., Boisseau, S. M., Belgacem, M. N., and Dufresne, A. 2005. Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21:2425-2433. Bhosale, R. and Singhal, R. 2006. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers 66: 521-527. Boutboul, A., Giampaoli, P., Feigenbaum, A., Ducruet, V. 2002. Influence of the nature and treatment of starch on aroma retention. Carbohydrate polymers. 47: 73-82. Cameron, P.A., Davison, B.H., Frymier, P.D. and Barton, J.W. 2002. Direct transesterification of gases by dry immobilized lipase. Biotechnol. Bioeng. 78: 251–256. Chand, S., Adlercreutz, P. and Mattiasson, B. 1997. Lipase-catalysed esterification of ethylelene glycol to mono and diesters. The effect of process parameters on reaction rate and production. Enzyme Microb. Technol. 20: 102–106. Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D. H., Song, C. L., Zhang, W. D., Wang, P. X. 2008. Effect of acetylation on the properties of corn starch. Food Chemistry 106: 923–928. Chulalaksanaukul, W., Condoret, J.S. and Combes, D. 1993. Geranyl acetate synthesis by lipase catalysed transesterification in supercritical carbon dioxide. Enzyme Microb. Technol. 15: 691–698. Chulalaksanaukul, W., Condort, J.S. and Combes, D. 1992. Kinetics of geranyl acetate synthesis by lipase catalyzed transesterification in n-hexane. Enzyme Microb. Technol. 14: 293–298. Cizova, A., Koschella, A., Heinze, T., Ebringerova, A. and Srokova, I. 2007. Octenylsuccinate derivatives of carboxymethyl starch-synthesis and properties. Starch/Stärke 59: 482-492. Dormo, N., Belafi-Bako, K., Bartha, L., Ehrenstein, U. and Gubicza, L. 2004. Manufacture of an environmental-safe bio lubricant from fusel oil by enzymatic esterification in solvent-free system. Biochem. Eng. J. 21: 229–234. Divakar, S. 2004. Porcine pancreas lipase catalysed ring-opening polymerization of epsilon-carprolactone. Journal of macromolecule science part A—pure and applied chemistry. A41: 537-546. Enzymatic Assay of LIPASE (EC 3.1.1.3) Sigma Prod. No. L-0763 and L-3126 (Olive Oil as Substrate), www.sigma-aldrich.com. Fang, J. M., Fowler, P. A., Sayers, C., Williams, P. A. 2004. The chemical modification of a range of starches under aqueous reaction conditions. Carbohydrate polymers. 55: 283-289. Fang, J. M., Fowler, P. A. Tomkinso, J., Hill, C. A. S. 2002. The preparation and characterization of a series of chemical modified potato starches. Carbohydrate polymers. 47: 245-252. Finkenstadt, V. L. 2005. Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 67: 735-745. Forssell, P., Hamunen, A., Autio, K. 1995. Hypochlorite oxidation of barley and potato starch. Starch/Stärke 47: 371-377. Funke, U., Lindhauer, M. G. 2001. Effect of reaction conditions and alkyl chain lengths on the properties of hydroxyalkyl starch ethers. Starch/Stärke 53: 547-554. Gallant, D. J., Bouchet, B., Buleon, A., Perez, S. 1992. Physical characateristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46: S3-S16. Gayot, S., Santarelli, X. and Coulon, D. 2003. Modification of flavonoid using lipase in nonconventional media: effect of the water content. J. Biotechnol. 101: 29–36. Goto, M., Hatanaka, C. and Masahiro, G. 2005. Immobilization of surfactant–lipase complexes and their high heat resistance in organic media. Biochem. Eng. J. 24: 91–94. Hirakawa, H., Kamiya, N., Kawarabayashi, Y. and Nagamune, T. 2005. Log P effect of organic solvents on a thermophilic alcohol dehydrogenase. Biochim. Biophys. Acta. 1748: 94–99. Hirata, H., Higuchi, K., Yamashina, T. 1990. Lipase catalyzed transesterification in organic solvent—effects of water and solvent, thermal-stability and some applications. Journal of biotechnology 14:157-167. Hizukuri, S., Takeda, Y., Yasuda, M., Suzuki, A. 1981. Multibranched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94: 205-213. Honig, D. H., Carr, M. E. 1992. Preparation and characterization of copolymers of modified starches and polyacrylonitrile. Starch/Stärke 44: 268-271. Imberty, A., Chanzy, H., Perez, S., Buleon, A., Tran, V. 1987. New three-dimensional structure for A-type starch. Marcromolecules 20: 2634-2636. Imberty, A., Perez, S. 1988. A revisit to the three-dimensional structure of beta-amylose. Biopolymers 27: 1205-1221. Jobling, S. 2004. Improving starch for food and industrial applications. Current opinion in plant biology 2004, 7:210-218. Jane, J-L., Wong, K-S., McPherson, A. E. 1997. Branched-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr. Res. 300: 219-227. Kapusniak, J. and Siemion, P. 2007. Thermal reactions of starch with long-chain unsaturated fatty acid. Part 2. Linoleic acid. Journal of Food Engineering 78: 323-332. Kiran, K. R., and Divakar, S. 2001. Lipase catalyzed esterification of organic acids with lactic acid. J. Biotechnol. 87: 109-121. Kiran, K.R., Suresh-Babu, C.V. and Divakar, S. 2001a. Thermostability of porcine pancreas lipase in non-aqueous media. Process Biochem. 36: 885–892. Klibanov, A.M. 1986. Enzymes that work in organic solvents. Chem. Technol. 16: 354–359. Kumar, R., Modak, J. and Madras, G. 2005. Effect of the chain length of the acid on the enzymatic synthesis of flavors in supercritical carbon dioxide. Biochem. Eng. J. 23: 199–202. Kumura, H., Mikawa, K. and Saito, Z. 1993. Influence of milk proteins on the thermostability of the lipase from Pseudomonas fluorescence 33. J. Dairy Sci. 76: 2164–2167. Kung, S. and Rhee, J. 1989. Effect of solvents on hydrolysis of olive oil by immobilized lipase in reverse phase system. Biotechnol. Lett. 11: 37–42. Lanne, C., Boeren, S., Vos, K. and Veeger, C. 1987. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30: 81–87. Larsson, M., Arasaratnam, V., Mattiasson, B. 1989. Integration of bioconversion and downstream processing-starch hydrolysis in an aqueous 2-phase system. Biotechnology and Bioengineering 33: 758-766. Leszczak, J.P. and Tran-Minh, C. 1998. Optimized enzymatic synthesis of methyl benzoate in organic medium. Operating conditions and impact of different factors on kinetics. Biotechnol. Bioeng. 60: 556–561. Lorenz, K. and Kulp, K. 1982. Cereal starch and root starch modification by heat-moisture treatment. 1. Physicochemical properties. Starke 34: 50-54. Lorenz, K. and Kulp, K. 1982. Cereal starch and root starch modification by heat-moisture treatment. 2. Functional properties of and baking potential. Starke 34: 76-81. Ma, L., Persson, M. and Adlercreutz, P. 2002. Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme Microb. Technol. 31: 1024–1029. Mathew, S. and Abraham, T. E. 2007. Physico-chemical characterization of starch ferulates of different degrees of substitution. Food Chemistry 105: 579-589. Matti, E., Tomas, A., Pasi, S., Reino, L., Soili, P., Sari, H., et al. 2004. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate polymers, 57: 261-267. Mehltretter, C. L., Mark, A. M. 1974. Process for making starch triacetates. US patent, 3795670. Mira, I., Persson, K. and Villwock, V. K. 2007. On the effect of surface active agents and their structure on the temperature-induced changes of normal and waxy wheat starch in aqueous suspension. Part. 1. Pasting and calorimetric studies. Carbohydrate Polymer 68: 665-678. Morrison, W. R. and Karkalas, J. 1990. Starch. Methods in plant biochemistry In: Dey P. M. editor. Carbohydrates. New York: Chapman and Hall. pp. 323-352. Mullen, J.W. and Pacsu, E. 1942. Starch studies. Preparation and properties of starch triesters. Ind. Eng. Chem. 34: 1209–1217. Neumann, U., Wiege, B. and Warwel, S. 2002. Synthesis of hydrophobic starch esters by reaction of starch with various carboxylic acid imidazolides. Starch/Stärke 54: 449-453. Noel, M. and Combes, D. 2003. Effects of temperature and pressure on Rhizomucor miehei lipase stability. J. Biotechnol. 102: 23–32. Osorio, N.M., Ferreira-Dias, S., Gusmao, J.H. and Da-Fonseca, M.M.R. 2001. Response surface modelling of the production of -3 polyunsaturated fatty acids-enriched fats by a commercial immobilized lipase J. Mol. Catal. B Enzym. 11: 677–686. Qiao, L., Gu, Q. M. and Cheng, H. N. 2006. Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydrate Polymers 66: 135-140. Rajan, A. and Abraham, T. E. 2006. Enzymatic modification of cassava starch by bacterial lipase. Bioprocess Biosyst. Eng. 29: 65-71. Rajan, A., Sudha, J. D. and Abraham, T. E. 2008. Enzymatic modification of cassava starch by fungal lipase. Industrial crops and products. 27: 50-59. Robin, J. P. Mercier, C., Charbonnire, R., Guilbot, A. 1974. Lintnerized starches gel-filtration and enzymatic studies of insoluble residues from prolonged acid tratment of potato starch. Cereal Chem. 51: 389-406. Robyt, J. F. and Choe, J. 1996. Acid hydrolysis starch granules in mixture of two alcohols combined in different ratios. Abstracts of papers of the American chemistry society. 211: 72-CARB. Sagar, A. D. and Merril, E.W.1995. Properties of fatty-acid esters of starch. J. Appl. Polym. Sci. 58: 1647–1656. Sakurai, T., Margolin, A.L., Russell, A.J. and Klibanov, A.M. 1988. Control of enzyme enantioselectivity by the reaction medium. J. Am. Chem. Soc. 110: 7236–7237. Schreier, P. 1997. Biotechnology of aroma compounds. Berger RG (ed.). Adv. Biochem. Eng. Biotechnol. 17: 52. Segel, I.H. 1975. Enzyme Kinetics. John-Wiley and Sons, NY, USA. Seiji, M. 1953. Studies on the enzymatic breakdown of limitedextrin. 1. The enzymatic breakdown of beta-limitdextrin by alpha-amylase. Journal of biochemistry 40: 509-514. Seiji, M. 1953. Studies on the enzymatic breakdown of limitedextrin. 2. The alpha-limitdextrin. Journal of biochemistry 40: 515-518. Shorgen, R. L. 2003. Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydrate polymers. 52: 319-326. Singh, J., McCarthy, O. J., Singh, H. 2007. Morphological, thermal and rheological characterization of starch isolated from New Zealand Kamo Kamo (Cucurbita pepo) fruit-A novel source. Carbohydrate polymers. 67: 233-244. Song, X., He, G., Ruan, H. and Chen, Q. 2006. Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch/Stärke 58: 109-117. Soo, E., Salleh, A.B., Basri, M., Rahman, R.N.Z.R.A. and Kamaruddin, K. 2003. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions. J. Biosci. Bioeng. 95: 361–367. Stamatis, H., Xenakis, A. and Kolisis, F.N. 1999. Bioorganic reactions in icroemulsions: the case of lipases. Biotechnol. Adv. 17: 293–318. Stamatis, H., Xenkis, A., Menge, V. and Kolisis, N.F. 1993. Kinetic study of lipase catalyzed esterification in microemulsion. Biotechnol. Bioeng. 42: 931–937. Takahashi, R. and Ojima, T. 1969. Pregelatinization of wheat starch in a drum drier. Starke. 21: 318-&. Teramoto, N., & Shibata, M. 2006. Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydrate Polymer, 63, 476–481. Tramper, J., Vermie, M.H., Beetink, H.H. and Von-Stocker, U. 1992. In: Biocatalysis in nonconventional media. Elsevier, Amsterdam. Trubiano, P. C. 1995. The role of speciality food starches in flavour encapsulation. ACS symposium series. 610: 244-253. Tufvesson, F., Wahlgren, M. and Eliasson, A. C. 2003. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acid. Starch/Stärke 55: 138-149. Wang, Y. J., Wang, L. F.2002. Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch/ Stärke. 54: 25-30. Welsh, F.W., Williams, R.E. and Dawson, K.H. 1990. Lipase-mediated synthesis of low molecular weight flavor esters. J. Food Sci. 55: 1679–1682. Wurzburg, O. B. 1995. Modified strarches. Pages 67-97 in: Food Polysaccharides and Their Applications. A. M. Stephen, Ed. Marcel Dekker, New York. Yadav, G.D. and Devi, K.M. 2004. Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem. Eng. Sci. 59: 373–383. Yuan, H., Nishiyama, Y., Wada, M. and Kuga, S. 2006. Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7: 696-700. Zaidi, A., Gainer, J.L., Carta, G., Mrani, A., Kadiri, T., Belarbi, Y. and Mir, A. 2002. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain length effects. J. Biotechnol. 93: 209–216. Zaks, A. and Klibanov, A.M. 1986. Substrate specificity of enzymes in organic solvents vs. water is reversed. J. Am. Chem. Soc. 108: 2767–2768. Zobel, H. F., Young, S. N., Rocca, L. A. 1988. Starch gelatinization-An X-ray diffraction study. Cereal chemistry. 65: 443-446. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41622 | - |
| dc.description.abstract | 本研究以天然樹薯澱粉為反應基質,與三種不同鏈長飽和脂肪酸(羊蠟酸(C10:0)、肉荳蔻酸(C14:0)與硬脂酸(C18:0))分別於水相及有機相行酯化反應,並且以工業中常用的脂肪水解酶lipase PS (from Burkholderia cepacia)催化酯鍵合成,可得脂肪酸修飾澱粉(fatty acid modified starch, FAMS)。後續對產物性質探討的試驗中,首先以鹼水解滴定法與核磁共振光譜測定FAMS之取代度,並以FTIR圖譜辨別澱粉與脂肪酸之間酯鍵的生成,接著以光學顯微鏡與掃描式電子顯微鏡(SEM)觀察產物外觀的變化與澱粉結晶區特有的十字偏光影像,再以X-ray繞射圖譜鑑定酯化修飾前後澱粉結晶區的變化,最後測定FAMS之糊液黏度、熱性質與接觸角,探討物化性質的改變與脂肪酸鏈長的關聯。結果顯示,於有機相系統製備的FAMS取代度皆高於水相系統製備者,取決於酵素催化的反應種類與澱粉型態的不同,相較於天然樹薯澱粉,所有的FAMS在核磁共振光譜中於0.85、1.22-1.67與2.2 ppm產生新的波鋒,在FTIR圖譜1730-1750 cm-1亦產生新的吸收峰,兩者皆直接證實天然澱粉與脂肪酸的酯鍵生成。由光學顯微鏡與SEM觀察FAMS的結果可知,水相製備流程不會破壞澱粉結晶區,所有澱粉粒仍保有完整的十字偏光現象,但是表面有些微損傷。X-ray繞射圖譜顯示,以未純化的酵素溶液製備之FAMS於22.0°出現新的特徵峰,推測是殘留於FAMS之游離脂肪酸所造成。從FAMS糊液黏度曲線來看,起始糊化溫度(PT)隨著脂肪酸鏈長增加而上升,尖峰糊液黏度(PV)隨著脂肪酸鏈長增加而降低。由接觸角測量的結果可知,FAMS錠片與蒸餾水探針的接觸角大於天然澱粉粒與天然澱粉溶出物,表示酯化修飾提升了澱粉的疏水性,而且提升的程度隨著脂肪酸鏈長增加而上升,但是與FAMS取代度無顯著關聯。 | zh_TW |
| dc.description.abstract | Starch esterification was proceeded with native cassava starch (NCS) and three saturated free fatty acids (FFA): capric acid (C10:0), myristic acid (C14:0) and stearic acid (C18:0). The fatty acid modified starch (FAMS) was prepared by using lipase PS (from Burkholderia cepacia) as the catalyst. To characterize FAMS, the degree of substitution (DS) of FAMS was determined by both alkaline titration and NMR methods and the ester bonds formed between hydroxyl groups of NCS and carboxyl groups of FFA were conformed by FTIR. The granular morphology and crystalinity of FAMS were examined by using the optical, polarized and scanning electronic microscopes and X-ray diffractometry. The pasting and thermal properties of FAMS were also investigated by using RVA and DSC. The surface polarity of FAMS was assessed by the contact angle measurement. FAMS prepared in the DSMO system had higher DS value than those prepared in the buffer system. Comparing with NCS, FAMS had new chemical shift peaks at 0.85, 1.22-1.67 and 2.2 ppm in 1H-NMR spectra and new absorbance at 1730-1750 cm-1 in FTIR spectra, which confirmed the ester bonds formed between hydroxyl group of starch and carboxyl group of FFA. Esterification process did not significantly destroy the starch granular morphology and its crystallinity, while slight damages could be investigated on the starch granule surface. The new diffractive absorbance (22.0°) in X-ray diffractograms revealed that FFA residues were found in FAMS prepared with commercial enzyme solution and colleced by using the centrifuging method. The increases of pasting temperature (PT) and decreases of peak viscosity (PV) were found in FAMS, which were positively related to the chain length of FFA but DS. The high PT, low PV, small or no BkD (breakdown), low FV (final viscosity) and small SB (setback) were the characters of C14:0 and C18:0 FAMSs. The results of contact angle measurements revealed that FAMS prepared in both buffer and DMSO systems were more hydrophobic than cassava starch, and the hydrophobicity of FAMS increased with the increase of chain length of FFA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:25:07Z (GMT). No. of bitstreams: 1 ntu-98-R95623009-1.pdf: 1762274 bytes, checksum: 3373791433ab9129b9bc01f237893221 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要.........................................................................................................................I
Abstract..........................................................................................................................II 目錄..............................................................................................................................IV 表目錄........................................................................................................................VII 圖目錄.......................................................................................................................VIII 第一章、前言..................................................................................................................1 第二章、文獻整理.........................................................................................................2 一、修飾澱粉之分類................................................................................................2 (一) 天然澱粉之結構與性質...............................................................................2 (二) 物理修飾.......................................................................................................3 (三) 轉化修飾.......................................................................................................4 (四) 衍生化修飾...................................................................................................6 二、酯化修飾澱粉之種類與應用..............................................................................7 (一) 乙醯化澱粉...................................................................................................7 (二) OSA澱粉........................................................................................................8 (三) 脂肪酸修飾澱粉...........................................................................................9 三、脂肪酸修飾澱粉之製備與性質分析................................................................11 (一) 化學製備法.................................................................................................11 (二) 脂肪水解酶修飾法.....................................................................................11 1. 脂肪水解酶之酵素動力學.....................................................................11 2. 脂肪水解酶調控之影響因子.................................................................12 3. 脂肪水解酶在酯類合成的應用.............................................................16 (三) 脂肪酸修飾澱粉生成反應之控制因子.....................................................19 (四) 取代度測定.................................................................................................20 (五) 性質測定與分析.........................................................................................21 第三章、材料與方法....................................................................................................23 一、材料....................................................................................................................23 二、儀器設備............................................................................................................23 三、酵素試驗............................................................................................................24 (一) 脂肪水解酶之配製.....................................................................................24 (二) 脂肪水解酶活性測定.................................................................................24 (三) 脂肪水解酶熱穩定性測定.........................................................................25 四、脂肪酸修飾澱粉之製備....................................................................................25 (一) 水相製備.....................................................................................................25 (二) 有機相製備.................................................................................................28 五、脂肪酸修飾澱粉取代度測定............................................................................30 (一) 鹼水解滴定法.............................................................................................30 (二) 核磁共振光譜儀(NMR)測定法.................................................................30 六、肪酸修飾澱粉之性質分析................................................................................31 (一) 一般成分分析.............................................................................................31 (二) FTIR 結構分析...........................................................................................31 (三) 1H-NMR 結構分析.....................................................................................31 (四) 光學顯微鏡及偏光影像觀察.....................................................................32 (五) 掃描式電子顯微鏡觀察.............................................................................33 (六) X-ray 繞射儀結晶性分析........................................................................33 (七) 澱粉糊液黏度測定.....................................................................................33 (八) 熱性質分析.................................................................................................34 (九) 接觸角測量.................................................................................................34 第四章、結果與討論....................................................................................................35 一、脂肪水解酶之活性...........................................................................................35 (一) 脂肪水解酶於水相及有機相之活性.........................................................35 (二) 脂肪水解酶之熱穩定性.............................................................................36 二、脂肪酸修飾澱粉之取代度................................................................................39 (一) 取代度測定方法之評估與比較.................................................................39 1. 鹼水解滴定法預實驗.............................................................................39 2. 酵素純化對取代度測定法之影響.........................................................40 3. 小結.........................................................................................................44 (二) 反應時間與反應物莫耳數比之影響.........................................................44 (三) 反應系統、脂肪酸鏈長與酵素純化對脂肪酸修飾澱粉取代度之影響..46 三、脂肪酸修飾澱粉微細結構分析........................................................................47 (一) 核磁共振光譜結構分析.............................................................................47 (二) FTIR 結構分析測定...................................................................................51 (三) 光學顯微鏡及偏光影像觀察.....................................................................53 (四) 掃描式電子顯微鏡 (SEM) 觀察..............................................................55 (五) X-ray 繞射儀結晶性分析...........................................................................57 四、脂肪酸修飾澱粉糊化性質................................................................................60 (一) 糊液黏度性質.............................................................................................60 (二) 熱性質.........................................................................................................62 (三) 接觸角測量.................................................................................................63 第五章、結論................................................................................................................66 第六章、參考文獻........................................................................................................68 表目錄 表一、以脂肪水解酶催化製備並且已商業化的的重要酯類.............................17-18 表二、以天然馬鈴薯澱粉及直鏈澱粉分子分別與脂肪酸進行酯化反應之反應條件與產物之取代度..........................................................................................................20 表三、製備脂肪酸修飾樹薯澱粉之反應物用量…...................................................26 表四、天然玉米澱粉之1H圖譜之化學位移標定....................................................32 表五、快速糊液黏度測定操作之條件設定..............................................................33 表六、反應溫度對脂肪水解酶於水相及有機相之活性影響..................................36 表七、以市售酵素及酵素萃取液製備之FAMS的粗脂肪含量..............................41 表八、反應物莫耳數比與反應時間對以市售酵素於水相系統製備之C10:0 FAMS取代度的影響..............................................................................................................45 表九、反應系統、脂肪酸鏈長與酵素萃取對FAMS取代度之影響......................47 表十、天然樹薯澱粉以市售酵素及酵素萃取液製備之FAMS的糊液黏度性質..62 表十一、天然樹薯澱粉與以市售酵素及酵素萃取液製備之FAMS的熱性質分析..................................................................................................................................63 表十二、以不同鏈長脂肪酸與酵素配製方式製備FAMS之接觸角測量..............64 圖目錄 圖一、澱粉粒中直鏈澱粉與支鏈澱粉之結構............................................................3 圖二、OSA修飾澱粉之反應機制及其副反應...........................................................9 圖三、澱粉與氯化辛醯在甲酸存在的情況下之酯化反應機制..............................10 圖四、脂肪酸修飾澱粉於水相之製備流程..............................................................27 圖五、脂肪酸修飾澱粉於有機相之製備流程..........................................................29 圖六、澱粉分子結構之氫原子標定結構圖..............................................................32 圖七、市售酵素溶液與酵素萃取液之熱穩定性......................................................38 圖八、以市售酵素與酵素萃取液製備C14:0及C18:0 FAMS的核磁共振圖譜...43 圖九、天然樹薯澱粉及以市售酵素製備FAMS之1H-NMR光譜.........................49 圖十、天然樹薯澱粉及以酵素萃取液製備FAMS之1H-NMR光譜.....................50 圖十一、天然樹薯澱粉與FAMS之遠紅外光圖譜..................................................52 圖十二、FAMS之光學顯微鏡影相照片及其偏光影像...........................................54 圖十三、於水相及有機相製備FAMS之SEM影像................................................56 圖十四、天然樹薯澱粉與以市售酵素製備之FAMS的X-ray繞射圖譜................57 圖十五、天然樹薯澱粉與以酵素萃取液製備之FAMS的X-ray繞射圖譜...........59 圖十六、三種不同鏈長飽和游離脂肪酸之X-ray繞射圖譜...................................59 圖十七、天然樹薯澱粉與不同鏈長FAMS糊液黏度變化圖.................................61 圖十八、蒸餾水液滴與天然樹薯澱粉及有機相系統製備之FAMS澱粉之接觸角測定照片......................................................................................................................65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 取代度 | zh_TW |
| dc.subject | 糊液黏度性質 | zh_TW |
| dc.subject | 酯化反應 | zh_TW |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 游離脂肪酸 | zh_TW |
| dc.subject | 樹薯澱粉 | zh_TW |
| dc.subject | 脂肪水解酶 | zh_TW |
| dc.subject | 疏水性修飾 | zh_TW |
| dc.subject | contact angle | en |
| dc.subject | lipase | en |
| dc.subject | cassava starch | en |
| dc.subject | free fatty acid | en |
| dc.subject | esterification | en |
| dc.subject | hydrophobic modification | en |
| dc.subject | degree of substitution | en |
| dc.subject | pasting property | en |
| dc.title | 酵素法製備不同鏈長脂肪酸修飾樹薯澱粉之性質探討 | zh_TW |
| dc.title | Preparation and Properties of Enzymatic Modified
Cassava Starch with Various Chain Length Fatty Acids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏雄,呂廷璋,陳炯堂 | |
| dc.subject.keyword | 脂肪水解酶,樹薯澱粉,游離脂肪酸,酯化反應,疏水性修飾,取代度,糊液黏度性質,接觸角, | zh_TW |
| dc.subject.keyword | lipase,cassava starch,free fatty acid,esterification,hydrophobic modification,degree of substitution,pasting property,contact angle, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
