請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪治平(Jyh-pyng Wang) | |
| dc.contributor.author | Li-Chung Ha | en |
| dc.contributor.author | 哈立忠 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:24:15Z | - |
| dc.date.available | 2009-02-03 | |
| dc.date.copyright | 2009-02-03 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2009-01-23 | |
| dc.identifier.citation | [1] http://www.canadianarachnology.org/data/spiders/30843.
[2] http://www.eksmaoptics.com/en/p/germanium-ge-components-70. [3] http://gratings.newport.com/products/efficiency/effFrame.asp?sku=010—53- *-950R. [4] http://www.mtinstruments.com/downloads/Mid- IR%20Polarizer%20Datasheet.pdf. [5] http://mass-spec.lsu.edu:16080/wiki/index.php/Home. [6] T. M. Jedju, L. Rothberg, and A. Labrie, “Subpicosecond time-resolved vibrational spectroscopy by transient infrared absorption,” Opt. Lett. 13, 961 (1988). [7] R. M. Hochstrasser, P. A. Anfinrud, R. Diller, C. Han, M. I. and. Lian, and B. Locke, Ultrafast Phenomena VII (1990). [8] M. Lin, T. A. Jackson, and P. A. Anfinrud, Ultrafast Phenomena IX (1994). [9] G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. John- son, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371, 416–419 (1994). [10] G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74, 3207 (2003). [11] K. M. Joos, L. A. Mawn, J.-H. Shen, E. D. Jansen, and V. A. Casagrande, “Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report,” Proc. of SPIE 4611, 81–85 (2002). [12] R. S. Miranda, H. W. K. Tom, A. M. Johnson, T. J. Bridges, and G. D. Aumiller, “Study of carrier dynamics in InP:Fe using time-resolved infrared reflection and transmission,” Appl. Phys. Lett. 60, 1105 (1992). [13] T. Elsaesser, R. J. Bauerle, R. Klann, and W. Kaiser, “Ultrafast Phe- nomena VII,” p. 328 (1990). [14] M. Woerner, W. Frey, M. T. Portella, C. Ludwig, T. Elsaesser, and W. Kaiser, “Ultrafast thermalization of nonequilibrium holes in p-type germanium studied by femtosecond infrared spectroscopy,” Phys. Rev. B 49, 17 007–17 010 (1994). [15] A. Lohner, M. Woerner, T. Elsaesser, and W. Kaiser, “Ultrafast Phe- nomena VIII,” p. 416 (1992). [16] G. Lambert, T. Hara, D. Garzella, T. Tanikawa2, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salieres, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M.-E. Couprie, “Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light,” Nature Physics 4, 296–300 (2008). [17] J. Raffy, T. Debuisschert, J.-P. Pocholle, and M. Papuchon, “Tunable IR laser source with optical parametric oscillators in series,” Appl. Opt. 33, 985–987 (1994). [18] M. Gerhards, “High energy and narrow bandwidth mid IR nanosecond laser system,” Opt. Comm. 241, 493–497 (2004). [19] I. S. Ruddock, R. Illingworth, and L. Reekie, “Tunable picosecond infra- red pulse generation with mode-locked cw lasers,” Opt. and Quan. Elect. 16, 87 (1984). [20] A. G. Yodh, H. W. K. Tom, G. D. Aumiller, and R. S. Miranda, “Gen- eration of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991). [21] T. Imahoko1, K. Takasago, T. Sumiyoshi, H. Sekita, K. Takahashi, and M. Obara, “Tunable mid-infrared, high-energy femtosecond laser source for glyco-protein structure analysis,” Appl. Phys. B 87, 629–634 (2007). [22] I. M. Frank and V. L. Ginzburg, “Observation of Coherent Transition Radiation,” J. Phys. (Moscow) 9, 353 (1945). [23] U. Happek, A. J. Sievers, and E. B. Blum, “Observation of coherent transition radiation,” Phys. Rev. Lett. 67, 2962–2965 (1991). [24] W. P. Leemans, C. G. R. Geddes, J. Faure, C. T’oth, J. van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd, and M. C. Martin, “Observation of Terahertz Emission from a Laser-Plasma Accelerated Electron Bunch Crossing a Plasma-Vacuum Boundary,” Phys. Rev. Lett. 91, 074 802 (2003). [25] T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43, 267–270 (1979). [26] T. Katsouleas and W. B. Mori, “Wave-Breaking Amplitude of Rela- tivistic Oscillations in a Thermal Plasma,” Phys. Rev. Lett. 61, 90–93 (1988). [27] E. Esarey, P. Sprangle, J. Krall, and A. Ting, “Overview of Plasma- Based Accelerator Concepts,” IEEE Transactions on Plasma Science 24, 252–288 (1996). [28] L. M. Gorbunov and V. I. Kirsanov, “The excitation of plasma waves by an electromagnetic wave packet,” Sov. Phys. JETP 66, 290 (1988). [29] E. Esarey and M. Pilloff, “Trapping and acceleration in nonlinear plasma waves,” Phys. Plasmas 2, 1432–1436 (1995). [30] E. Esarey, , A. Ting, P. Sprangle, D. Umstadter, and X. Liu, “Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas,” IEEE Trans. Plasma Sci. 21, 95 (1993). [31] W. P. Leemans, P. Catravas, E. Esarey, C. G. R. Geddes, C. Toth, R. Trines, C. B. Schroeder, B. A. Shadwick, J. van Tilborg, and J. Faure, “Electron-Yield Enhancement in a Laser-Wakefield Accelerator Driven by Asymmetric Laser Pulses,” Phys. Rev. Lett. 89, 174 802 (2002). [32] W.-T. Chen, T.-Y. Chien, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Optically Controlled Seeding of Raman Forward Scattering and Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator,” Phys. Rev. Lett. 92, 075 003 (2004). [33] W. B. Mori, “The physics of the nonlinear optics of plasma at relativistic intensities for short-pulse lasers,” IEEE J. Quantum Electron. 33, 1942– 1953 (1997). [34] S. V. Bulanov, F. Pegoraro, A. M. Pukhov, and A. S. Sakharov, “Transverse-Wake Wave Breaking,” Phys. Rev. Lett. 78, 4205–4208 (1997). [35] M. Geissler, J. Schreiber, and J. M. ter Vehn, “Bubble acceleration of electrons with few-cycle laser pulses,” New J. Phys. 8, 186 (2006). [36] C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-MeV Electron Beam Gen- eration by Direct Laser Acceleration in High-Density Plasma Channels,” Phys. Rev. Lett. 83, 4772–4775 (1999). [37] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoen- ergetic beams of relativistic electrons from intense laserVplasma inter- actions,” Nature 431, 535–538 (2004). [38] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004). [39] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka1, “A laserVplasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004). [40] B. Hidding, K.-U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J. G. Gallacher, S. P. Jamison, D. Jaroszynski, G. Pretzler, , and R. Sauerbrey, “Generation of Quasi- monoenergetic Electron Bunches with 80-fs Laser Pulses,” Phys. Rev. Lett. 96, 105 004 (2006). [41] C.-T. Hsieh, C.-M. Huang, C.-L. Chang, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Tomography of Injection and Acceleration of Monoenergetic Electrons in a Laser-Wakefield Accelerator,” Phys. Rev. Lett. 96, 095 001 (2006). [42] C.-L. Chang, C.-T. Hsieh, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Production of a monoenergetic electron bunch in a self- injected laser-wakefield accelerator,” Phys. Rev. E 75, 036 402 (2007). [43] F. S. Tsung, R. Narang, W. B. Mori, C. Joshi, R. A. Fonseca, and L. O. Silva, “Near-GeV-Energy Laser-Wakefield Acceleration of Self-Injected Electrons in a Centimeter-Scale Plasma Channel,” Phys. Rev. Lett. 93, 185 002 (2004). [44] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 56, 219–221 (1985). [45] D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. T. Cotton, “Terawatt Ti:sapphire laser with a spherical reflective- optic pulse expander,” Opt. Lett. 20, 2114–2116 (1995). [46] K. Wynne, G. D. Reid, , and R. M. Hochstrasser, “Regenerative am- plification of 30-fs pulses in Ti:sapphire at 5 kHz,” Opt. Lett. 19, 895 (1994). [47] Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, “Emission of Electro- magnetic Pulses from Laser Wake?elds through Linear Mode Conver- sion,” Phys. Rev. Lett. 94, 095 003 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41596 | - |
| dc.description.abstract | 中紅外光源在波段上包含了 5 μm 到 30 μm,而這個波段目前不僅在醫學顯像上有廣泛的應用更在材料定性上大放異彩。而高強度、小於一皮秒的短脈衝中紅外光光源甚至可以被用在上述兩點的動態學研究。傳統產生中紅外的方法包含了自由電子雷射和非線性光學。前者可以提供數百微焦耳能量、小於一皮秒的中紅外光脈衝。後者雖然僅能產生數微焦耳的能量,但是脈衝時寬卻能夠達到小於一
百飛秒的境界。 在此,我們要介紹如何以十兆瓦鈦藍石晶體輸出的時寬 42 飛秒、中心頻率 810 奈米、205 微焦耳雷射光源來產生中紅外光脈衝。其波段介於 6 到 10 微米且脈衝能量可達 250 微焦耳(相當於目前自由電子雷射達到的極限),而光束發散角則為 60 mrad。 有趣的是,同樣的實驗環境與參數卻能以雷射電漿波來加速電子達到單能量之 50 MeV 高能電子束。為了釐清這兩者間的關係,我們比對了中紅外光與單能電子束斷層掃描下的強度分布。實驗結果顯示這兩者有強烈的相關性,但這相關性 卻不是因果關係。由 PIC 模擬顯示,中紅外光甚至遠在單能電子束產生前就已經 有成長的跡象。 我們將在第一章介紹中紅外光的應用以及產生方法。並在第二章介紹雷射電漿波的基本原理以及電漿中相關的非線性效應。第三章將介紹以啾頻脈衝放大產 生高強度雷射光源的方法,以及介紹本實驗室 10 TW 雷射系統的架構。第四章則 是實驗設計,包含了參數設計和實驗架設。我們將在第五章討論實驗結果並試圖 去解釋。實驗和模擬結果與我們原先預期的模型相吻合,其機制為雷射電漿加速 器中的光子減速。最後,我們將在第六章總結這篇論文,並計畫未來將完成的全 域定性。 | zh_TW |
| dc.description.abstract | Mid-infrared (MIR) ranging between 5 μm and 30 μm has widespread
applications in medical imaging and material characterization. Intense MIR pulses with sub-ps duration is more attractive for resolving dynamics of the detail process. Conventional methods of generating pulsed MIR light source include free electron laser and traditional nonlinear optics. The former can generate MIR pulse of a-few-hundred-μJ energy in sub-ps. The latter is energetically limited below a-few-μJ, but it’s duration can be shorter, said sub-100-fs. Here we demonstrate using a 10 TW Ti:sapphire laser system (42 fs, 810 nm, and 205 mJ) to produce MIR pulses (6 to 10 μm) with 250 μJ (comparable to that of the most intense free electron lasers), and 60 mrad beam divergence. Interestingly, the similar condition had also been used to generate 50- MeV monoenergetic electron beam in the way of laser wakefield acceleration. In order to clarify their relationship, tomographies on the intensities of MIR pulses and monoenergetic electron beams are performed. The experimen- tal result shows a strong correlation, but this correlation is not a causal relationship. A PIC code simulation shows that MIR pulses grow before monoenergetic electron beams are produced. The general applications and generation methods would be introduced in chapter 1. We’ll then focus on basic principles of laser wakefield acceleration and relative plasma nonlinear optics. Chapter 3 is about generation of intense laser pulses by chirped-pulse-amplification and architecture of our 10-TW laser system. Chapter 4 is our experimental design, including parameter design and experimental setup. We will discuss the experimental results and try to explain in chapter 5. Both experimental and simulation results agree that MIR pulses come from self-phase modulation by photon deceleration in the bubble regime of laser wakefield acceleration. Finally, We’ll summarize the thesis and plan future works to finish full characterizations on the MIR light source in chapter 6. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:24:15Z (GMT). No. of bitstreams: 1 ntu-97-R95222022-1.pdf: 4670648 bytes, checksum: 6c6b501ca5984bba1fed95d2b4e359e8 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Acknowledgement (Chinese) i
Abstract (Chinese) iii Abstract v 1 Introductions 1 1.1 The applications of mid-infrared . . . . . . . . . . . . . . . . . 1 1.1.1 Chemistry applications . . . . . . . . . . . . . . . . . . 1 1.1.2 Medical applications . . . . . . . . . . . . . . . . . . . 2 1.1.3 Material science . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Methods of generating mid-infrared pulses . . . . . . . . . . . 3 1.2.1 Free electron lasers . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Traditional nonlinear optics . . . . . . . . . . . . . . . 4 1.2.3 Coherent transition radiation . . . . . . . . . . . . . . 5 2 Laser wakefield accelerator 7 2.1 Principles of Laser Wakefield Acceleraton . . . . . . . . . . . . 8 2.2 Self-modulated Laser wakefield acceleraton . . . . . . . . . . . 13 2.2.1 Raman forward instability (1 D effect) . . . . . . . . . 15 2.2.2 Self-modulated instability (3 D effect) . . . . . . . . . . 16 2.3 Bubble regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 High Power Laser System 21 3.1 Chirped-pulse amplification . . . . . . . . . . . . . . . . . . . 23 3.2 10-TW laser system . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Experimental design 31 4.1 Parameter design . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Experimental setup and diagnostic systems . . . . . . . . . . . 32 4.2.1 Relay image systems . . . . . . . . . . . . . . . . . . . 36 4.2.2 Interferogram . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Side scattering image system . . . . . . . . . . . . . . . 37 4.2.4 Monochromater . . . . . . . . . . . . . . . . . . . . . . 40 4.2.5 Scintillating screen for electron beam profile . . . . . . 41 5 Experimental results 47 5.1 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 Backing pressure . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 Afterword 59 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Bibliography 61 | |
| dc.language.iso | en | |
| dc.subject | 電漿加速器 | zh_TW |
| dc.subject | 中紅外光 | zh_TW |
| dc.subject | bubble regime | en |
| dc.subject | MIR | en |
| dc.subject | mid-infrared | en |
| dc.subject | Laser Wakefield Accelerator | en |
| dc.title | 以電漿泡泡產生之中紅外光脈衝光源 | zh_TW |
| dc.title | Production of Mid-Infrared Pulses from Plasma Bubbles in the Laser Wakefield Electron Accelerator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳賜原(Szu-yuan Chen) | |
| dc.contributor.oralexamcommittee | 石明豐(Ming-Feng Shih) | |
| dc.subject.keyword | 中紅外光,電漿加速器, | zh_TW |
| dc.subject.keyword | MIR,mid-infrared,Laser Wakefield Accelerator,bubble regime, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-01-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
