請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張宏鈞 | |
dc.contributor.author | Chun Nien | en |
dc.contributor.author | 粘群 | zh_TW |
dc.date.accessioned | 2021-06-15T00:23:14Z | - |
dc.date.available | 2013-07-01 | |
dc.date.copyright | 2011-08-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | [1] Almeida, V. R., Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett., vol. 29, pp. 1209–1211, 2004.
[2] Banerjee, K., A. Amerasekera, G. Dixit, and C. Hu, “The effect of interconnect scaling and low-k dielectric on the thermal characteristics of the IC metal,” IEDM Tech. Dig., pp. 65–68, 1996. [3] Berenger,J.P.,“Aperfectlymatchedlayerfortheabsorptionofelectromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. [4] Berenger, J. P., “Evanescent waves in PMLs: origin of the numerical reection in wavestructure interaction problems,” IEEE Trans. Antennas Propagat. vol. 47, pp. 1497–1503, 1999. [5] Bohr, M. T., “Interconnect scaling-the real limiter to high performance ULSI,” Proc. IEDM Tech. Dig., pp. 241–244, 1995. [6] Bohren, C. F., and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed. New York: Wiley, 1983. [7] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferom- eters and ring resonators,” Nature, vol. 440, pp. 508–511, 2006. [8] Chang, K., and L. H. Hsieh, Microwave Ring Circuits and Related Structure. New York: Wiley, 2004. [9] Csendes, Z., and P. Silvester, “Numerical solution of dielectric loaded waveg- uides: I-Finite-element analysis,” IEEE Trans. Microw. Theory Tech., vol. 18, pp. 1124–1131, 1970. [10] Dey, S., and R. Mittra, “A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting ob- jects,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 273–275, 1997. [11] Ditlbacher, H., J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett., vol. 81, pp. 1762-1764, 2002. [12] Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., pp. 566–613, 1900. [13] Garnett, J. C. M., “Colours in metal glasses and metal films,” Philosoph. Trans. Royal Soc. London, vol. 3, pp. 385–420, 1904. [14] Gorodetsky, M. L., A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett., vol. 21, pp.453–455, 1996. [15] Gramotnev, D. K., and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon., vol. 4, pp. 83–91, 2010. [16] Holland, R., “THREDE: A free-field EMP coupling and scattering code,” IEEE Trans. Nucl. Sci., vol. 24, pp. 2416–2421, 1977. [17] Holland, R., “Finite-difference solution of Maxwell’s equations in generalized non-orthogonal coordinates,” IEEE Trans. Nucl. Sci., vol. 30, pp. 4589–4591, 1983. [18] Hosseini, A., and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett., vol. 90, pp. 2613–2625, 2007. [19] Jensen, T. R., L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci., vol. 10, pp. 295–317, 1999. [20] Jensen, T. R., M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanopar- ticles,” J. Phys. Chem. B, vol. 103, pp. 9846–9853, 1999. [21] Ji X., T. Lu, W. Cai and P. Zhang, “Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring res- onators,” J. Lightwave Technol., vol. 23, pp. 3864–3874, 2005. [22] Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370–4379, 1972. [23] Kashiwa T., and I. Fukai, “A treatment by FDTD method of dispersive charac- teristics associated with orientation polarization,” IEEE Trans. Inst. Electron., Inform., Commun. Eng., vol. 73, pp. 1326–1328, 1990. [24] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of silver nanoparticles,” Opt. Express, vol. 6, pp. 213–219, 2000. [25] Kottmann, J. P., and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express, vol. 8, pp. 655–663, 2001. [26] Kottmann, J. P., O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett., vol. 341, pp. 1–6, 2001. [27] Kunz, K., and K.-M. Lee, “A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment: Part I-The method and its implementation,” IEEE Trans. Electromagn. Compat., vol. 20, pp. 328–333, 1978. [28] Kuzuoglu, M. and R. Mittra, “Frequency dependence of the constitutive pa- rameters of causal perfectly matched anisotropic absorbers,” IEEE Microwave Guided Wave Lett., vol. 6, pp. 447–449, 1996. [29] Lee, C. E., R.T. Shin, and J. A. Kong, “Finite difference method for electro- magnetic scattering problems,” PIER 4 Progress in Electromagnetics Research, New York: Elsevier, pp. 373–442, 1992. [30] Lee, T. W., and S. K. Gray, “Subwavelength light bending by metal slit struc- tures,” Opt. Express, vol. 13, pp. 9652–9659, 2005. [31] Liebermann, T., and W. Knoll “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloid. Surf. A, vol. 171, pp. 115–130, 2000. [32] Liu, L., Z. Han, and S. He, “Novel surface plasmon waveguide for high integra- tion,” Opt. Express, vol. 13, pp. 6645–6650, 2005. [33] Liu, Q. H., “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett., vol. 15, pp. 158–165, 1997. [34] Lorentz, H. A., The Theory of Electrons. Teubner: Leipzig, 1906. [35] Lynch, D. W., and W. R. Hunter, Handbook of Optical Constants of Solids. Orlando, FL: Academic Press, 1985. [36] Moskovits, M., “Surface-enhanced spectroscopy,” Rev. of Modern Phys., vol. 57, pp. 783–826, 1985. [37] Mur, G., “Asorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat., vol. 23, pp. 377–382, 1981. [38] Ng, M. Y., and W. C. Liu, “Local filed confinement in three pair arrays of metallic nanocylinders,” Opt. Express., vol. 14, pp. 4504–4513, 2006. [39] Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits. McGraw- Hill, 1989. [40] NVIDIA, NVIDIA CUDA Programming Guide Version 1.1, NVIDIA, 2007. [41] Oda, K., S. Suzuki, H. Takahashi, and H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” IEEE Photon. Technol. Lett., vol. 6, pp. 1031–1034, 1994. [42] Oliva, J. M., and S. K. Gray, “Theoretical study of dielectrically coated metallic nanowires,” Chem. Phys. Lett., vol. 379, pp.325–331, 2003. [43] Pile, D. F. P., and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett., vol. 30, pp. 1186–1188, 2005. [44] Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000. [45] Schultz, D. A., “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol., vol. 14, pp. 13–22, 2003. [46] Sweatlock, L. A., S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Pol- man, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B, vol. 71, pp. 235–408, 2005. [47] Taflove, A., and M. Brodwin, “Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye,” IEEE Trans. Microw. Theory Tech., vol. 23, pp. 888–896, 1975. [48] Taflove, A., and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method. Boston, MA: Artech House, 2005. [49] Teixeira, F. L., and W. C. Chew, “On causality and dynamic stability of per- fectly matched layers for FDTD simulations,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 775–785, 1999. [50] Tsilipakos, O., and Em. E. Kriezis, “Microdisk resonator filters made of dielectric-loaded plasmonic waveguides,” Opt. Commun., vol. 283, pp. 3095– 3098, 2010. [51] Umashankar, K., and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., vol. 24, pp. 397–405, 1982. [52] Veronis, G., and S. Fan, “Bends and splitters in metal-dielectric-metal sub- wavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, 131102, 2005. [53] Vial, A., A. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B, vol. 71, pp. 85416–85423, 2005. [54] Vuckovic, J., M. Locar, O. Painter, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron., vol. 36, pp. 1131–1144, 2000. [55] Wang C. Y., S. Y. Chung, C. H. Teng, C. P. Chen, and H. C. Chang, “Plas- monics and optical near-field simulations using the Legendre pseudospectral frequency-domain (PSFD) method,” in 2010 International Conference on Op- tics and Photonics in Taiwan (OPT 10) Proceedings (CD-ROM), paper OPT2- O-30, Southern Taiwan University, Tainan, Taiwan, R.O.C., 2010. [56] Worthing P. T., and W. L. Barnes, “Spontaneous emission within metal clad microcavities,” J. Opt. A: Pure App. Opt., vol. 1, pp. 501–506 , 1999. [57] Xiao, S., L. Liu, M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express, vol. 14, pp. 2932–2937, 2006. [58] Yee, K., “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, 1966. [59] Yoshie, T., L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors, vol. 11, pp. 1972–1991, 2011. [60] Yu, W., and R. Mittra, “A conformal FDTD software package modeling anten- nas and microstrip circuit components,” IEEE Antennas Propagat. Mag., vol. 42, pp. 28–39, 2000. [61] Zhu, J., “Polarization direction characters of local electric field around dielectric coated gold nanowire,” Appl. Phys. A, vol. 88, pp. 673–677, 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41565 | - |
dc.description.abstract | The finite-difference time-domain (FDTD) method is a useful design and numerical analysis tool in the rapidly evolving research of photonics. However, the traditional FDTD code is insufficient when facing the challenges of the difficulty in programming level rising with the increasing demands of complex structures and of the enormous amount of floating-point operations and large computer memory usage when a high- accuracy simulation result is needed. In this thesis, we address each of these issues by developing an object-oriented FDTD simulator enabling a flexible and extensible framework and parallelizing the computation kernel by the OpenMP/MPI hybrid scheme and the CUDA on graphic processing unit to solve the speed and memory problem. Next, we study two categories of the nanophotonics. The first is study of the local field enhancement between two metallic nano-cylinders. The effects of the cell size of the FDTD mesh on the accuracy and convergence of calculated near fields and far-field responses are studied by comparing with those obtained by the pseudospectral frequency-domain (PSFD) method and analytical solutions, respectively. The study of the effect of the dielectric shell on the spectral response of the dielectric-coated silver nano-cylinder pair shows that the resonant frequency is in strong correlation with the dielectric shell. The second part devotes to the waveguide devices. We investigate the transmittance of various bending structures in the plasmonic waveguide. Further, a comparison between FDTD simulations using different cell sizes and the results obtained by the discontinuous Galerkin time- domain (DGTD) method in the transmittance of a dielectric microring resonator add-drop filter shows that even a coarse mesh can be used to obtain a quick but still relatively accurate result. Finally, two plasmonic ring resonators, one with a square ring and the other with a circular ring, have been simulated and compared. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:23:14Z (GMT). No. of bitstreams: 1 ntu-100-R98941028-1.pdf: 9602226 bytes, checksum: 34e094414c5ef8252d07068e47d66ddc (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations ................................ 1 1.2 NumericalSchemesforWaveguideAnalysis. . . . . . . . . . . . . . . 2 1.3 DescriptionoftheThesis......................... 3 2 The Finite-Difference Time-Domain Method 5 2.1 Introduction................................ 5 2.2 ModelingofDispersiveMaterials .................... 8 2.2.1 TheLorentzOscillatorModel .................. 8 2.2.2 TheDrudeModel......................... 8 2.2.3 ModelingofMetal ........................ 9 2.2.4 Implementation of Dispersive Material Models . . . . . . . . . 10 2.3 Convolutional Perfectly Matched Layer Absorbing Boundary Condi- tions.................................... 13 3 Designing the FDTD Simulator 21 3.1 Introduction................................ 21 3.2 Object-OrientedDesign.......................... 22 3.3 Acceleration of the FDTD Method Using Parallel Computing . . . . . 24 3.3.1 OpenMP/MPIHybridParallelization . . . . . . . . . . . . . . 24 3.3.2 CUDAParallelization....................... 26 4 Modeling of Field Enhancement in Nano-Cylinders 35 4.1 Overview.................................. 35 i 4.2 Modeling of Near-Field Enhancement in Silver Nano-Cylinder Pair . . 36 4.2.1 CaseoftheCircularSilverCylinderPair . . . . . . . . . . . . 36 4.2.2 CaseoftheSquareSilverCylinderPair . . . . . . . . . . . . . 37 4.2.3 Case of the Dielectric-Coated Circular Silver Cylinder Pair . . 38 4.3 Modeling of Scattering in Core-Shell Nano-Cylinder Pair . . . . . . . 39 4.3.1 Computation of Electromagnetic Scattering . . . . . . . . . . 39 4.3.2 Modeling of the Scattering Cross Section of Single Silver Nano- cylinder .............................. 40 4.3.3 Effects of Dielectric Shell on the Spectral Response of Coated SilverNano-cylinderPair..................... 41 5 Modeling of Plasmonic and Dielectric Waveguides and Ring Res- onators 63 5.1 Overview.................................. 63 5.2 Modeling of Plasmonic Waveguides with 90 ◦ Bending Structures . . . 64 5.3 Modeling of Dielectric Ring Resonator and the Study of the Effects ofMeshFineness ............................. 67 5.4 ModelingofPlasmonicRingResonators ................ 69 6 Conclusion 95 Bibliography 97 | |
dc.language.iso | en | |
dc.title | 發展平行運算核心之物件導向有限差分時域架構以分析二維電漿子奈米結構與波導元件 | zh_TW |
dc.title | Developing an Object-Oriented FDTD Framework with Parallel Kernel for Analyzing Two-Dimensional Plasmonic Nanostructures and Waveguide Devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳中平,鄧君豪 | |
dc.subject.keyword | 有限差分時域法,電漿子波導,奈米電漿子,濾波器,平行計算,CUDA,OpenMP,MPI,物件導向, | zh_TW |
dc.subject.keyword | FDTD,plasmonic waveguides,nano-plasmonic,channel drop filters,parallel computing,CUDA,OpenMP,MPI,object-oriented, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 9.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。