Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平
dc.contributor.authorCheng-Chueh Liuen
dc.contributor.author劉承珏zh_TW
dc.date.accessioned2021-06-15T00:22:01Z-
dc.date.available2009-02-10
dc.date.copyright2009-02-10
dc.date.issued2009
dc.date.submitted2009-02-03
dc.identifier.citationAngevine WM, White AB, Senff CJ, Trainer M, Banta RM, Ayoub MA., 2003.
Urban–rural contrasts in mixing height and cloudiness over Nashville in 1999. J
Geophys Res, 108, 4092.
Angstrom, A., 1964. The parameters of atmospheric turbidity. Tellus, 16, 64–75.
Arimoto, R., Kim, Y.J., Kim, Y.P., Quinn, P.K., Bates, T.S., Anderson, T.L., Gong, S.,
Uno, I., Chin, M., Huebert, B.J., Clarke, A.D., Shinozuka, Y., Weber, R.J.,
Anderson, J.R., Guazzotti, S.A., Sullivan, R.C., Sodeman, D.A., Prather, K.A.,
Sokolik, I.N., 2006. Characterization of Asian dust during ACE-Asia. Global and
Planetary Change, 52, 23–56.
Boucher, O. and T.L. Anderson, 1995. General circulation model assessment of the
sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size
and chemistry, J. Geophys. Res., 100, 26117-26134.
Cairo, F., G. di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, 1999.
Comparison of Various Linear Depolarization Parameters Measured by Lidar, Appl.
Optics, 38 , 4425-4432.
Chen Jen-Ping, 1994. Theory of deliquescence and modified Köhler curves. American
Meteorol. Soc., 51, 3505-3516.
Chen WN, Lin PH, Chen TK, Chou CCK, Chen JP., 2006. Diurnal cycle of mixing
measured by lidar. 23rd International Laser Radar Conference, Nara, Japan, July
24–28.
Chen Wei-Nai, Tsai Fu-Jung, Chou C.-K. Charles, Changa Shih-Yu, Chen Yi-Wei,
Chen Jen-Ping, 2007. Optical properties of Asian dusts in the free atmosphere
measured by Raman lidar at Taipei, Taiwan. Atmospheric Environment, 41,
32
7698–7714.
Chou C.-K. Charles, Lee C.-T., Chen W.-N., Chang S.-Y., Chen T.-K., Lin C.-Y.,
Chen J.-P., 2007. Lidar observations of the diurnal variations in the depth of urban
mixing layer: A case study on the air quality deterioration in Taipei, Taiwan.
Science of the Total Environment, 374, 156–166.
Cohn SA, Angevine WM., 2000. Boundary layer height and entrainment zone thickness
measured by lidars and wind profiling radars. J Appl Meterol., 39, 1233–47.
Cooper, D.W., Davis, J.W., Byers, R.L., 1974. Measurements of depolarization by dry
and humidified salt aerosols using a lidar analogue. Aerosol Science, 5, 117–123.
Duce, R.A., 1995. Sources, distributions, and fluxes of mineral aerosols and their
relationship to climate. In: Charlson, R.J., Heintzenberg, J. (Eds.), Aerosol Forcing
of Climate. Wiley, New York, pp. 43–72.
Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, A., O’Neill, N.T., Slutsker,
I., Kinne, S., 1999. Wavelength dependence of the optical depth of biomass burning,
urban, and desert dust aerosols. Journal of Geophysical Research, 104,
31333–31350.
Flamant C, Pelon J, Flamant PH, Durand P., 1997. Lidar determination of the
entrainment zone thickness at the top of the unstable marine atmospheric
boundary-layer. Boundary - Layer Meteorol, 83, 247–84.
Gai Marco, Massimo, Piero Bruscaglioni, Andrea Ismaelli, Giovanni Zaccanti, 1996.
Laboratory simulations of lidar returns from clouds. Applied Optics, 27, 5435-5442.
Iwasaka, Y., Shibata, T., Nagatani, T., Shi, G.-Y., Kim, Y.S., Matsuki, A., Trochkine,
D., Zhang, D., Yamada, M., Nagatani, M., Nakata, H., Shen, Z., Li, G., Chen, B.,
Kawahira, K., 2003. Large depolarization ratio of free tropospheric aerosols over the
Taklamakan Desert revealed by lidar measurements: possible diffusion and transport
33
of dust particles. Journal of Geophysical Research, 108, 10.1029/ 2002JD003267.
Jung, C.E., 1963, Air chemistry and radioactivity, Academic Press, New York, p.133.
Kim, Y.S., Iwasaka, Y., Shi, G.-Y., Nagatani, T., Shibata, T., Trochkin, D., Matsuki, A.,
Yamada, M., Chen, B., Zhang, D., Nagatani, M., Nakata, H., 2004. Dust particles in
the free atmosphere over desert areas on the Asian continent: measurements from
summer 2001 to summer 2002 with balloon-borne optical particle counter and lidar,
Dunhuang, China. Journal of Geophysical Research, 109, 10.1029/ 2002JD003269.
Köhler, H., 1936, The nucleus in an the growth of hygroscopic droplets. Trans. Faraday
Soc., 32, 1152-1161.
Kunz GJ, Leeuw G, Becker E, O'Dowd CD., 2002. Lidar observations of atmospheric
boundary layer structure and sea spray aerosol plumes generation and transport at
Mace Head, Ireland (PARFORCE experiment). J Geophys Res., 107, 8106.
Liu, Z., Sugimoto, N., Murayama, T., 2002. Extinction-tobackscatter ratio of Asian dust
observed with high-spectralresolution lidar and Raman lidar. Applied Optics, 41,
2760–2767.
Matthias V, Bosenberg J., 2002. Aerosol climatology for the planetary boundary layer
derived from regular lidar measurements. Atmos. Res., 63, 221–45.
Menut L, Flamant C, Pelon J, Flamant PH., 1999. Urban boundary-layer height
determination from lidar measurements over the Paris area. Appl. Opt., 38, 945–54.
Mok TM, Rudowicz CZ., 2004. A lidar study of the atmospheric entrainment zone and
mixed layer over Hong Kong. Atmos. Res., 69, 147–63.
Murayama, T., M. Furushima, A. Oda, N. Iwasaka and K. Kai, 1996. Depolarization
ratio measurements in the atmospheric boundary layer by lidar in Tokyo, J. Meteor.
Soc. Japan, 74, 571-578.
Murayama, T., Okamoto, H., Kaneyasu, N., Kamataki, H., Miura, K., 1999. Application
34
of lidar depolarization measurement in the atmospheric boundary layer: effects of
dust and sea-salt particles. Journal of Geophysical Research, 104, 31781–31792.
Murayama, T., Mu¨ ller, D., Wada, K., Shimizu, A., Sekiguchi, M., Tsukamoto, T.,
2004. Characterization of Asian dust and Siberian smoke with multi-wavelength
Raman lidar over Tokyo, Japan in spring 2003. Geophysical Research Letters, 31,
10.1029/2004GL021105.
Reid, J.S., Eck, T.F., Christopher, S.A., Hobbs, P.V., Holben, B., 1999. Use of the A °
ngstrom exponent to estimate the variability of optical and physical properties of
aging smoke particles in Brazil. Journal of Geophysical Research, 104,
27473–27490.
Sakai, T., Shibata, T., Iwasaka, Y., Nagai, T., Nakazato, M., Matsumura, T., Ichiki, A.,
Kim, Y.-S., Tamura, K., Troshkin, D., Hamdi, S., 2002. Case study of Raman lidar
measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan.
Atmospheric Environment, 36, 5479–5489.
Sassen, K., Zhao, H., Yu, B.-K., 1989. Backscatter laser depolarization studies of
simulated stratospheric aerosols—Crystallized sulfuric acid droplets. Applied Optics,
28, 3024–3029.
Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P., 2000. Review and
intercomparison of operational methods for the determination of the mixing height.
Atmos Environ., 34, 1001–27.
Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N.,
Aoki, K., Uchiyama, A., Yamazaki, A., 2004. Continuous observations of Asian
dust and other aerosols by polarization lidars in China and Japan during ACE-Asia.
Journal of Geophysical Research, 109, D19S17, 10.1029/2002JD003253.
Tang, I.N. and H.R. Munkelwitz, 1994, Water activities, densities, and refractive
35
indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J.
Geophys. Res., 99, 18801-18808.
Taylor, K.E. amd J.E. Penner, 1994. Response of the climate system to atmospheric
aerosols and greenhouse gases. Nature, 369, 734-737.
Tetsu Sakai, Takashi Shibata, Yasunobu Iwasaka, 1997. Relative humidity,
backscattering ratio and depolarization ratio as derived from Raman lidar
observations. Journal of the Meteorological Society of Japan, 75, 1179-1185.
Turner DB., 1969. Workbook of atmospheric diffusion estimates. U.S. EPA Report
999-AP-26, Washington, D.C..
Wandinger, U., Mu¨ ller, D., Bo¨ ckmann, C., Althausen, D., Matthias, V., Bo¨ senberg,
J., WeiX, V., Fiebig, M., Wendisch, M., Stohl, A., Ansmann, A., 2002. Optical and
microphysical characterization of biomass-burning and industrial-pollution aerosols
from multiwavelength lidar and aircraft measurements. Journal of Geophysical
Research, 107, 10.1029/2000JD000202.
Weber, A., S. P. S. Porto, L. E. Cheesman, J. J. Barrett, 1967. High-resolution Raman
spectroscopy of gases with cw-laser excitation. Journal of the Optical Society of
America, 57 , 19-28.
Young, A. T., 1980. Revised depolarization corrections for atmospheric extinction. Appl.
Optics, 19 , 3427-3428.
Zaccanti Giovanni, Piero Bruscaglioni, Massimo Gurioli, Paola Sansoni, 1993.
Laboratory simulation of lidar returns from clouds: experimental and numerical
results. Applied Optics, 9, 1590-1597.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41534-
dc.description.abstract氣膠粒子是重要空氣污染物之一,對於人體健康有極大的影響,也會經由散
射或是吸收輻射的過程影響氣候,對於雲的形成過程也扮演了凝結核或是冰核的
角色。而這些不同的效應會因為氣膠粒子本身的成分組成、混合狀態及空間分佈
而有極大的不同,但是這個特徵與機制尚未被完全了解。
由於光達(LIDAR, Light Detection and Ranging system)的觀測具有高空間時間
解析度特性,為研究氣膠及邊界層的有效工具,因此本研究使用RCEC/NTU-AS
拉曼光達來分析氣膠粒子的成分組成及垂直分佈,並推演出的台北邊界層高度。
本研究分析所使用的參數有:(1)背向散射率,可反映出氣膠的濃度;(2)消偏振率,
主要反映出氣膠粒子的形狀,較低的消偏振率反映出粒子為球性,而不規則形的
粒子則會有較高的消偏振率;(3) Ångstrom exponent(α),此參數可得知粒子的粒徑
大小,α 值越小代表粒子越大,α 值越大則代表較小的粒子。本研究首先分析了台
北地區這些參數的季節分佈。
本研究並針對2007 年5 月7 日、1 月28 日及2008 年3 月4 日進行分析,此
三個案其間台灣附近都有高壓存在,2007 年5 月7 日顯示了氣膠粒子吸濕過程在
特性上的改變,而2007 年1 月28 日及2008 年3 月4 日為大陸沙塵個案,由光達
資料得知當時亦存在其他種類之氣膠。藉由消偏振率及Ångstrom exponent 的分
析,我們發現了幾個重要的現象例如潮解、成雲作用、氣膠核化以及邊界層擾動
造成氣膠的混合現象。利用這樣的結果可以得到一個消偏振率及Ångstrom
exponent 變化的概念圖,對於日後光達訊號的相關分析將有所助益。
zh_TW
dc.description.abstractAerosol particles are a major air pollutant that affects human health, play
important roles in climate by scattering or absorbing solar radiation, and can modify
cloud properties by acting as cloud condensation nuclei and ice forming nuclei. The
significance of these effects varies with their composition and mixing state as well as
the spatial distribution which unfortunately are not well understood.
With the advantage of high temporal and spatial resolutions, LIDAR (Light
Detection and Ranging system) is a powerful tool for aerosol and boundary layer
analysis. This study applies the RCEC/NTU-AS Raman lidar to analyze the
composition and vertical distribution of aerosol particles, and deduce from them the
boundary layer characteristics at Taipei. The parameters analyzed include (1) the
backscattering signals which are representative of aerosol concentration; (2) the
depolarization ratio which reflects the irregular shape of aerosols as non-spherical
aerosols give higher depolarization ratio than spherical ones; and (3) the
backscatter-related Ångstrom exponent, α, which indicates the size of aerosol particles
as it approximately decreases with increasing particle size. Seasonal variation of these
parameters over Taipei during 2006-2007 are analyzed in this study.
In addition, we focus on the cases on 5 May 2007, 28 Jan 2007 and 4 Mar 2008,
when Taipei was situated at the outskirt of a high pressure system. The 5 May 2007 case
shows the swelling process of aerosol, and the cases of 28 Jan 2007 and 4 Mar 2008
were Asian dust incursion events. Besides mineral dust, the lidar data also revealed
other types of aerosols in these two cases. By combining the analyses of
backscattering intensity, Angstrom exponent and depolarization ratio, we identified
several important phenomena such as deliquescence-dehydration, swelling, cloud drop
activation, aerosol nucleation and boundary layer turbulence mixing, as well as aerosol
mixing states. The findings are summarized and reduced to a conceptual diagram
which could be a useful tool for facilitating further analysis of lidar signals.
Keywords: aerosol, lidar, depolariztion, Ångstrom exponent, deliquescence, swelling
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:22:01Z (GMT). No. of bitstreams: 1
ntu-98-R96229017-1.pdf: 3855433 bytes, checksum: a65469269842066bbfecd9ed25d0ea8f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝..................................................................................................................................I
摘要................................................................................................................................ II
ABSTRACT ..................................................................................................................III
目錄............................................................................................................................... IV
圖目錄............................................................................................................................VI
表目錄..............................................................................................................................X
第一章 前言.................................................................................................................... 1
第二章 研究方法............................................................................................................ 4
2.1 光達系統簡介........................................................................................................ 4
2.2 氣膠光學特徵參數................................................................................................ 5
2.2.1 背向散射比..................................................................................................... 5
2.2.2 消偏振率........................................................................................................ 6
2.2.3 Ångström exponent (α) .................................................................................... 7
2.2.4 邊界層高度......................................................................................................... 8
2.3 HYSPLIT 逆軌跡分析........................................................................................ 9
2.4 TAQM/kosa 沙塵模擬...................................................................................... 10
第三章 氣膠特性...........................................................................................................11
3.1 濕度影響...............................................................................................................11
3.1.1 吸濕作用....................................................................................................... 12
V
3.1.2 潮解及脫水.................................................................................................. 13
3.2 混合狀態.............................................................................................................. 14
第四章 結果與討論...................................................................................................... 15
4.1 2007 年5 月7 日個案......................................................................................... 16
4.1.1 個案綜觀分析.............................................................................................. 16
4.1.2 個案光達訊號分析...................................................................................... 16
4.2 2007 年1 月28 日個案....................................................................................... 18
4.2.1 個案綜觀分析.............................................................................................. 18
4.2.2 個案光達訊號分析...................................................................................... 19
4.3 2007 年3 月3-4 日個案...................................................................................... 22
4.3.1 個案綜觀分析.............................................................................................. 22
4.3.2 個案光達訊號分析...................................................................................... 23
4.4 討論...................................................................................................................... 27
第五章 結論.................................................................................................................. 29
參考文獻........................................................................................................................ 31
附表............................................................................................................................... 36
附圖............................................................................................................................... 39
dc.language.isozh-TW
dc.subject潮解zh_TW
dc.subject消偏振率zh_TW
dc.subject光達zh_TW
dc.subject氣膠zh_TW
dc.subject吸濕膨脹zh_TW
dc.subjectngstrom exponentzh_TW
dc.subjectswellingen
dc.subjectaerosolen
dc.subjectlidaren
dc.subjectdepolariztionen
dc.subjectngstrom exponenten
dc.subjectdeliquescenceen
dc.title以光達觀測分析台北之邊界層與氣膠特性zh_TW
dc.titleAerosol and Boundary Layer Characteristics Analysis Using Raman Lidar at Taipeien
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.coadvisor洪惠敏
dc.contributor.oralexamcommittee吳清吉,林博雄,周崇光
dc.subject.keyword氣膠,光達,消偏振率,&Aring,ngstrom exponent,潮解,吸濕膨脹,zh_TW
dc.subject.keywordaerosol,lidar,depolariztion,&Aring,ngstrom exponent,deliquescence,swelling,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2009-02-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved