Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorYing-Te Leeen
dc.contributor.author李盈德zh_TW
dc.date.accessioned2021-06-15T00:21:55Z-
dc.date.available2013-07-15
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citation[1] Ahmed, G. P., and P. Daly, “Finite-element method for inhomogeneous waveguide,”
Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661–1664, 1969.
[2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode
analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation
method for an arbitrary dielectric interface,” J. Lightwave Technol., vol.
20, pp. 1627–1634, 2002.
[3] Baken, N. H. G., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, “Computational
modeling of diffused channel waveguides using a domain integral
equation,” J. Lightwave Technol., vol. 8, pp. 576–586, 1990.
[4] B′erenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
[5] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular
dielectric waveguides by a new finite diRerence method,” J. Lightwave
Technol., vol. 34, pp. 1104–1113, 1986.
[6] Bise, R. T., R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D.
J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication
Conference (OFC 2002) Technical Digest, pp. 466–468, 2002.
[7] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides:
I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol.
18, pp. 1124–1131, 1970.
[8] Chew, W. C., and W. H.Weedom, “A 3D perfectly matched medium from modified
Maxwell’s equations with stretched coordinate,” IEEE Microwave Opt.
Technol. Lett., vol. 7, pp. 599–604, 1994.
[9] Dinleyici, M. S., and B. Patterson, “Vector modal solution of evanescent couplers,”
J. Light Technol., vol. 15, pp. 2316–2324, 1997.
[10] Ditkowski, A., J. S. Hesthaven, and C. H. Teng, “Modeling dielectric interfaces
in the FDTD-method: A comparative study,” in 2000 Process in Electromagnetics
Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, 2000.
[11] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-difference
time-domian formulation for general materials in complex geometries,” IEEE
Trans. Antennas Propagat., vol. 49, pp. 749–756, 2001.
[12] Duguay, M. A., Y. Kokubun, T. L. Koch, and L, Pfeiffer, “Antiresonant reflecting
optical waveguides in SiO2-Si mutilayer structures,” Appl. Phys. Lett., vol.
49, pp. 13–15, 1986.
[13] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an
iterative finite-difference method with transparent boundary conditions,” J.
Lightwave Technol., vol. 13, pp. 465–469, 1995.
[14] Hadley, G. R., “Low-truncation-error finite-difference equations for photonics
simulation I: beam propagation,” J. Lightwave Technol., vol. 16, pp. 134–141,
1998.
[15] Hadley, G. R., “High-accuracy finite-difference equations for dielectric waveguide
analysis II: Dielectric corners,” J. Lightwave Technol., vol. 20, pp. 1219–
1231, 2002.
[16] Her, T., M. H. Cho, and W. Cai, “Numerical study of heterogeneously-indexed
photonic bandgap fibers,” in Conference on Lasers and Electro-Optics (CLEO
2007) Technical Digest, 2007.
[17] Hsu, S. M., H. J. Chen, and H. C. Chang, “Finite element analysis of fullvectorial
modal and leakage properties of microstructured and photonic crystal
fibers,” Proc. of SPIE, vol. 5623, pp. 316–324, 2005.
[18] Huang, W. P., M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics
of ARROW structures,” J. Lightwave Technol., vol. 10, pp. 1015–1022,
1992.
[19] Knight, J. C., T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica singlemode
optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp.
1547–1549, 1996.
[20] Koch, T., U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant
reflecting optical waveguides for III-V integrated optics,” Electron. Lett.,
vol. 23, pp. 244–245, 1987.
[21] Kokubun, Y., T. Baba, and T. Sakaki, “Low-loss antiresonant reflecting optical
waveguide on Si substrate in visible-wavelength region,” Electron. Lett., vol. 17,
pp. 892–893, 1986.
[22] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides
using tangential vector finite elememts,” IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 1262–1271, 1991.
[23] Li, Y. F., K. Iizuka, and J. W. Y. Lit, “Equivalent-layer method for optical
waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp.
273–275, 1992.
[24] Li, D. U., and H. C. Chang, “An efficient full-vectorial finite element modal
analysis of dielectric waveguides incorporating inhomogeneous elements across
dielectric discontinuities,” IEEE J. Quantum Electron., vol. 36, pp. 1251–1261,
2002.
[25] Litchinitser, N., S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran,
and C. de Sterke, “Applications of an ARROW model for designing tunable
photonic devices,” Opt. Express, vol. 12, pp. 1540–1550, 2004.
[26] Lui, M. L., and Z. Chen, “A direct computation of propagation costant using
compact 2-D full-wave eigen-based finite-difference frequency-domain technique,”
in Proc. 1999 Int. Conf. Computational Electromagnetics Applications,
pp. 78–81, 1999.
[27] L‥usse, P., P. Stuwe, J. Sch‥ule, and H.-G. Unger, “Analysis of vectorial mode
fields in optical waveguides by a new finite difference method,” J. Lightwave
Technol., vol. 12, pp. 487–494, 1994.
[28] Marcuse, D., “Investigation of coupling between a fiber and an infinite slab,”
J. Lightwave Technol., vol. 7, pp. 122–130, 1989.
[29] Mittra, R., and U. Pekel, “A new look an the perfectly matched layer (PML)
concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave
Guid Wave Lett., vol. 5, pp. 84–86, 1995.
[30] Mohammadi, A., H. Nadgaran, and M. Agio, “Contour-path effective permittivities
for the two-dimensional finite-difference time-domain method,” Opt.
Express, vol. 13, pp. 10367–10381, 2005.
[31] Ohke, S., T. Umeda, and Y. Cho, “Equivalent-layer method for optical waveguides
with a multiple quantum well structure: comment,” Opt. Lett., vol. 18,
pp. 1870–1872, 1993.
[32] Pekel, ′’U., and R. Mittra, “A finite-element method frequency-domain application
of the perfectly matched layer (PML) concept,” Microwave Opt. Technol.
Lett., vol. 9, pp. 117–122, 1995.
[33] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and
microwave waveguide problems,” IEEE Trans. Microwvae Theory Tech., vol.
32, pp. 20–28, 1984.
[34] Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on
anisotropic lossy mapping of space,” IEEE Microwave and Guided Wave Lett.,
vol. 5, pp. 90–92, 1995.
[35] Saini, M., and E. K. Sharma, “Equivalent refractive index of MQW waveguides,”
IEEE J. Quantum Electron., vol. 32, pp. 1383–1390, 1996.
[36] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation
method based on a finite element scheme: Application to photonic crystal
fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002.
[37] Soref, R. A., and K. J. Ritter, “Silicon Antiresonant reflecting optical waveguides,”
Opt. Lett., vol. 15, pp. 792–794, 1990.
[38] Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, “Dyadic Green function
for the electromagnetic field in multilayered isotropic media: an operator approach,”
Inst. Elec. Eng. Proc.-J., vol. 132, pp. 329–338, 1985.
[39] Steel, M. J., T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C.
Bottern, “Symmetry and degeneracy in microstructured optical fibers,” Opt.
Lett., vol. 26, pp. 488–490, 2001.
[40] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the spectral
index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc.-J.,
vol. 137, pp. 21–26, 1990.
[41] Sudbo, A. S., “Why are accurate computations of mode fields in rectangular
dielectric waveguide difficult?,” J. Lightwave Technol., vol. 10, pp. 418–419,
1992.
[42] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate vector
mode calculations by beam propagation method,” J. Lightwave Technol., vol.
11, pp. 1209–1215, 1993.
[43] Yee, K. S., “Numerical solution of initial boundary value problems involing
Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol.
14, pp. 302–307, 1966.
[44] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain
method for the analysis of two-dimensional photonic crystals,” Opt. Express,
vol. 12, pp. 1397–1408, 2004.
[45] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver
with PML absorbing boundary conditions for optical waveguides and photonic
crystal fibers,” Opt. Express, vol. 12, pp. 6165–6177, 2004.
[46] Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured
optical fibers,” Opt. Express, vol. 10, pp. 853–864, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41531-
dc.description.abstractIn this thesis, the full-vectorial finite-difference frequency-domain (FDFD) method is utilized to analyze optical waveguides and photonic crystal fibers. The perfectly matched layer (PML) is employed as the absorbing boundary of the computational window in the FDFD solver. Besides, the FDFD model adopts three approximation methods for dealing with dielectric interfaces: the stair-case approximation method, the index average (IA) scheme, and the proper boundary condition (BC) matching scheme.
Several optical waveguides such as slab waveguides, antiresonant reflecting optical waveguides (ARROWs), channel waveguides, rib waveguides, photonic wires, and optical fibers are analyzed and discussed. We make a comparison among the staircase approximation method, the IA scheme, and the proper BC matching scheme in treating the dielectric interfaces of those waveguides. Besides, we also discuss the effects of some parameters of the FDFD model on the accuracy and convergency of numerical results. The properties of the holey fibers, the honeycomb fibers, and the photonic crystal fibers with high index rods are investigated. The field distributions, the effective index and loss are calculated for different cases.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:21:55Z (GMT). No. of bitstreams: 1
ntu-100-R98942001-1.pdf: 3542850 bytes, checksum: 6739d4c8b12ee10d2d064d605c007264 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
1.1 Numerical Schemes for the Analysis of Optical Waveguides . . . . . . 1
1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Finite-Difference Frequency-Domain Method 5
2.1 Central Difference Scheme . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Mode Solvers for 1-D Problems . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 The TE Polarized Wave . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 The TM Polarized wave . . . . . . . . . . . . . . . . . . . . . 9
2.3 Mode Solvers for 2-D Problems . . . . . . . . . . . . . . . . . . . . . 11
2.4 FDFD Method with Perfectly Matched Layers . . . . . . . . . . . . . 14
2.5 Approximation at Dielectric Interfaces . . . . . . . . . . . . . . . . . 18
2.5.1 Stair-Case Approximation . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Index Average scheme . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Proper Boundary Condition Matching . . . . . . . . . . . . . 19
3 Analysis of Optical Waveguides 29
3.1 Slab Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Antiresonant Reflecting Optical Waveguides . . . . . . . . . . . . . . 32
3.3 Channel Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Rib Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Photonic Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Analysis of Fibers 63
4.1 Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Holey Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Honeycomb Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Photonic Crystal Fibers with High Index Rods . . . . . . . . . . . . . 69
5 Conclusion 99
Bibliography 103
dc.language.isoen
dc.subject光子晶體光纖zh_TW
dc.subject有限差分頻域法zh_TW
dc.subject光波導zh_TW
dc.subjectphotonic crystal fibersen
dc.subjectFinite-difference frequency-domain methoden
dc.subjectoptical waveguidesen
dc.title以有限差分頻域法分析光波導與光子晶體光纖之探討zh_TW
dc.titleInvestigation of the Finite-Difference Frequency-Domain Scheme for Analyzing Optical Waveguides and Photonic Crystal Fibersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文翰,邱奕鵬
dc.subject.keyword有限差分頻域法,光波導,光子晶體光纖,zh_TW
dc.subject.keywordFinite-difference frequency-domain method,optical waveguides,photonic crystal fibers,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved