請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41531完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Ying-Te Lee | en |
| dc.contributor.author | 李盈德 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:21:55Z | - |
| dc.date.available | 2013-07-15 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-15 | |
| dc.identifier.citation | [1] Ahmed, G. P., and P. Daly, “Finite-element method for inhomogeneous waveguide,”
Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661–1664, 1969. [2] Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol., vol. 20, pp. 1627–1634, 2002. [3] Baken, N. H. G., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol., vol. 8, pp. 576–586, 1990. [4] B′erenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. [5] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides by a new finite diRerence method,” J. Lightwave Technol., vol. 34, pp. 1104–1113, 1986. [6] Bise, R. T., R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference (OFC 2002) Technical Digest, pp. 466–468, 2002. [7] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124–1131, 1970. [8] Chew, W. C., and W. H.Weedom, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinate,” IEEE Microwave Opt. Technol. Lett., vol. 7, pp. 599–604, 1994. [9] Dinleyici, M. S., and B. Patterson, “Vector modal solution of evanescent couplers,” J. Light Technol., vol. 15, pp. 2316–2324, 1997. [10] Ditkowski, A., J. S. Hesthaven, and C. H. Teng, “Modeling dielectric interfaces in the FDTD-method: A comparative study,” in 2000 Process in Electromagnetics Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, 2000. [11] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-difference time-domian formulation for general materials in complex geometries,” IEEE Trans. Antennas Propagat., vol. 49, pp. 749–756, 2001. [12] Duguay, M. A., Y. Kokubun, T. L. Koch, and L, Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si mutilayer structures,” Appl. Phys. Lett., vol. 49, pp. 13–15, 1986. [13] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995. [14] Hadley, G. R., “Low-truncation-error finite-difference equations for photonics simulation I: beam propagation,” J. Lightwave Technol., vol. 16, pp. 134–141, 1998. [15] Hadley, G. R., “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol., vol. 20, pp. 1219– 1231, 2002. [16] Her, T., M. H. Cho, and W. Cai, “Numerical study of heterogeneously-indexed photonic bandgap fibers,” in Conference on Lasers and Electro-Optics (CLEO 2007) Technical Digest, 2007. [17] Hsu, S. M., H. J. Chen, and H. C. Chang, “Finite element analysis of fullvectorial modal and leakage properties of microstructured and photonic crystal fibers,” Proc. of SPIE, vol. 5623, pp. 316–324, 2005. [18] Huang, W. P., M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol., vol. 10, pp. 1015–1022, 1992. [19] Knight, J. C., T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica singlemode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996. [20] Koch, T., U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett., vol. 23, pp. 244–245, 1987. [21] Kokubun, Y., T. Baba, and T. Sakaki, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett., vol. 17, pp. 892–893, 1986. [22] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elememts,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [23] Li, Y. F., K. Iizuka, and J. W. Y. Lit, “Equivalent-layer method for optical waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp. 273–275, 1992. [24] Li, D. U., and H. C. Chang, “An efficient full-vectorial finite element modal analysis of dielectric waveguides incorporating inhomogeneous elements across dielectric discontinuities,” IEEE J. Quantum Electron., vol. 36, pp. 1251–1261, 2002. [25] Litchinitser, N., S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Applications of an ARROW model for designing tunable photonic devices,” Opt. Express, vol. 12, pp. 1540–1550, 2004. [26] Lui, M. L., and Z. Chen, “A direct computation of propagation costant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique,” in Proc. 1999 Int. Conf. Computational Electromagnetics Applications, pp. 78–81, 1999. [27] L‥usse, P., P. Stuwe, J. Sch‥ule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487–494, 1994. [28] Marcuse, D., “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol., vol. 7, pp. 122–130, 1989. [29] Mittra, R., and U. Pekel, “A new look an the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid Wave Lett., vol. 5, pp. 84–86, 1995. [30] Mohammadi, A., H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express, vol. 13, pp. 10367–10381, 2005. [31] Ohke, S., T. Umeda, and Y. Cho, “Equivalent-layer method for optical waveguides with a multiple quantum well structure: comment,” Opt. Lett., vol. 18, pp. 1870–1872, 1993. [32] Pekel, ′’U., and R. Mittra, “A finite-element method frequency-domain application of the perfectly matched layer (PML) concept,” Microwave Opt. Technol. Lett., vol. 9, pp. 117–122, 1995. [33] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwvae Theory Tech., vol. 32, pp. 20–28, 1984. [34] Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 90–92, 1995. [35] Saini, M., and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron., vol. 32, pp. 1383–1390, 1996. [36] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002. [37] Soref, R. A., and K. J. Ritter, “Silicon Antiresonant reflecting optical waveguides,” Opt. Lett., vol. 15, pp. 792–794, 1990. [38] Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, “Dyadic Green function for the electromagnetic field in multilayered isotropic media: an operator approach,” Inst. Elec. Eng. Proc.-J., vol. 132, pp. 329–338, 1985. [39] Steel, M. J., T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bottern, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett., vol. 26, pp. 488–490, 2001. [40] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21–26, 1990. [41] Sudbo, A. S., “Why are accurate computations of mode fields in rectangular dielectric waveguide difficult?,” J. Lightwave Technol., vol. 10, pp. 418–419, 1992. [42] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate vector mode calculations by beam propagation method,” J. Lightwave Technol., vol. 11, pp. 1209–1215, 1993. [43] Yee, K. S., “Numerical solution of initial boundary value problems involing Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol. 14, pp. 302–307, 1966. [44] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397–1408, 2004. [45] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165–6177, 2004. [46] Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853–864, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41531 | - |
| dc.description.abstract | In this thesis, the full-vectorial finite-difference frequency-domain (FDFD) method is utilized to analyze optical waveguides and photonic crystal fibers. The perfectly matched layer (PML) is employed as the absorbing boundary of the computational window in the FDFD solver. Besides, the FDFD model adopts three approximation methods for dealing with dielectric interfaces: the stair-case approximation method, the index average (IA) scheme, and the proper boundary condition (BC) matching scheme.
Several optical waveguides such as slab waveguides, antiresonant reflecting optical waveguides (ARROWs), channel waveguides, rib waveguides, photonic wires, and optical fibers are analyzed and discussed. We make a comparison among the staircase approximation method, the IA scheme, and the proper BC matching scheme in treating the dielectric interfaces of those waveguides. Besides, we also discuss the effects of some parameters of the FDFD model on the accuracy and convergency of numerical results. The properties of the holey fibers, the honeycomb fibers, and the photonic crystal fibers with high index rods are investigated. The field distributions, the effective index and loss are calculated for different cases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:21:55Z (GMT). No. of bitstreams: 1 ntu-100-R98942001-1.pdf: 3542850 bytes, checksum: 6739d4c8b12ee10d2d064d605c007264 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Numerical Schemes for the Analysis of Optical Waveguides . . . . . . 1 1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 The Finite-Difference Frequency-Domain Method 5 2.1 Central Difference Scheme . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Mode Solvers for 1-D Problems . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 The TE Polarized Wave . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 The TM Polarized wave . . . . . . . . . . . . . . . . . . . . . 9 2.3 Mode Solvers for 2-D Problems . . . . . . . . . . . . . . . . . . . . . 11 2.4 FDFD Method with Perfectly Matched Layers . . . . . . . . . . . . . 14 2.5 Approximation at Dielectric Interfaces . . . . . . . . . . . . . . . . . 18 2.5.1 Stair-Case Approximation . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Index Average scheme . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 Proper Boundary Condition Matching . . . . . . . . . . . . . 19 3 Analysis of Optical Waveguides 29 3.1 Slab Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Antiresonant Reflecting Optical Waveguides . . . . . . . . . . . . . . 32 3.3 Channel Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Rib Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Photonic Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Analysis of Fibers 63 4.1 Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Holey Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Honeycomb Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Photonic Crystal Fibers with High Index Rods . . . . . . . . . . . . . 69 5 Conclusion 99 Bibliography 103 | |
| dc.language.iso | en | |
| dc.subject | 光子晶體光纖 | zh_TW |
| dc.subject | 有限差分頻域法 | zh_TW |
| dc.subject | 光波導 | zh_TW |
| dc.subject | photonic crystal fibers | en |
| dc.subject | Finite-difference frequency-domain method | en |
| dc.subject | optical waveguides | en |
| dc.title | 以有限差分頻域法分析光波導與光子晶體光纖之探討 | zh_TW |
| dc.title | Investigation of the Finite-Difference Frequency-Domain Scheme for Analyzing Optical Waveguides and Photonic Crystal Fibers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許文翰,邱奕鵬 | |
| dc.subject.keyword | 有限差分頻域法,光波導,光子晶體光纖, | zh_TW |
| dc.subject.keyword | Finite-difference frequency-domain method,optical waveguides,photonic crystal fibers, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
