請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41528
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁作新(Tzou-Shin Ueng) | |
dc.contributor.author | I-CHUN LIN | en |
dc.contributor.author | 林益群 | zh_TW |
dc.date.accessioned | 2021-06-15T00:21:48Z | - |
dc.date.available | 2011-02-10 | |
dc.date.copyright | 2009-02-10 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-02-03 | |
dc.identifier.citation | 参考文獻
【1】 Seed, H. B. and Lee, K. L. 1966, “Liquefaction of saturated sands during cyclic loading”, Journal of the Soil Mechanics and Foundation Division,ASCE, Vol. 92, No. SM6, pp. 105-134. 【2】 Seed, H. B. and Peacock, W. H., 1971, “Test procedures for measuring soil liquefaction characteristics”, Journal of the Soil Mechanics and Foundation Division,ASCE, Vol. 97, No. SM8, pp. 1099-1119. 【3】 Ishihara, K., 1996, “Soil Behavior in Earthquake Geotecthnics”, Oxford Science Publication. 【4】 Kramer, S. L. and Seed, H. B., 1988, “Initiation of Soil Liquefaction under static loading conditions”, Journal of Geotechnical Engineering,ASCE, Vol. 114, No. 4, pp.412-430. 【5】 Castro, G., 1975, “Liquefaction and cyclic mobility of saturated sands”, Journal of the Geotechnical Engineering Division,ASCE, Vol.101, No. GT6, pp. 551-569 【6】 Ishibashi, K. Tatsuoka, F., and Yasuda, S., 1975, “Undrained deformation and liquefaction of sand under cyclic stresses”, Soil and Foundations, Vol. 15, pp. 29-44. 【7】 Ishihara, K., 1993, “Liquefaction and flow failure during earthquakes”, Geotechnique, Vol.43, No. 3, pp. 351-415. 【8】 Castro, G.,and Poulos, S. J., 1977, “Factors affecting liquefaction and cyclic mobility”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516. 【9】 Kramer, Steven L., 1996, “Geotechnical earthquake engineering”, Prentice Hall, New Jersey. 【10】 陳界文,2002,“細粒料特性對土壤抗液化強度之影響”,台灣大學土木工程學研究所碩士論文。 【11】 江國良,1990,“飽和砂土受反覆荷重作用後之不排水受剪行為”,台灣大學土木工程學研究所碩士論文。 【12】 Pradhan, T., Kiku, H. and Sato, K., 1995, “Effect of fines content on behavior of sand during the process to liquefaction”, Earthquake Geotechnical Engineering, Ishihara (ed.), Balkema, Rotterdam, pp.823-828. 【13】 Yasuda, S., Yoshida, N., Masuda, T., Nagase, H., Mine, K. and Kiku, H., 1995, “Stress-strain relationships of liquefied sands”, Earthquake Geotechnical Engineering, Ishihara (ed.), Balkema, Rotterdam, pp.811-816. 【14】 Shamoto, Y., Zhang, J. M. and Tokimatsu, K., 1998, “New charts for predicting large residual post-liquefaction ground deformation”, Soil Dynamics and Earthquake Engineering, Vol. 17, pp.427-438. 【15】 Kano, S., Kidera, H. and Sasaki,Y, Ikeoka, T.and Ichii, K., 2008,“The Rigidity Recovery of Post Liquefied Soils”, Geotechnical Earthquake Engineering and Soil Dynamics Ⅳ, ASCE, GSP181(CD-ROM). 【16】 Weaver, T. J., Ashford, S. A. and Rollins, K. M., 2005, “Response of a 0.6-m CISS pile in liquefied soil under lateral loading”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1, pp. 94-102. 【17】 吳紹華,2006,“砂土細料含量對動力三軸試驗超額孔隙水壓量測之影響”,台灣大學土木工程學研究所碩士論文。 【18】 余定縣,2004,“貓羅溪高細粒料土壤抗液化強度之研究”,台灣大學土木工程學研究所碩士論文。 【19】 Head, K. H., 1986, “Manual of Soil Laboratory Testing”,Vol.3, ELE international limited, London. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41528 | - |
dc.description.abstract | 本研究採取南投市貓羅溪沿岸第二高速公路旁在集集地震中曾經發生過液化區域之土樣,並利用CKC動力三軸試驗儀進行試驗。試驗土壤包括以純粗料(>200號篩)重模成相對密度40%、60%及70%的土壤試體,以及第二部分以控制乾密度為1400 kg/m3,細料含量分別為10%、20%及40%的重模土壤試體,以探討砂土受反覆荷重液化後受剪的行為。由純粗料土壤初始液化後試驗結果得知,相對密度越大時,剪力阻抗回升增加時的剪應變值越小且回升剪力模數越大。從不同細料含量貓羅溪砂土壤初始液化後試驗結果,當試體細料含量低於20%時,細料含量越多剪力阻抗回升時的剪應變值越小且回升剪力模數越大;當試體細料含量超過20%時,細料含量越多剪力阻抗回升增加時的剪應變值越大且回升剪力模數越小。而從純粗料土壤液化後回升剪力模數與設計所採用之靜態剪力模數相比,相對密度較大之粗料砂土,回升後之模數達原設計值較高的比例。由不同細料含量貓羅溪砂土壤回升剪力模數與設計靜態剪力模數相比,細料含量10%~20%之土壤,細料含量較多,回升後之模數可達原設計值較高的比例;細料含量20%~40%之土壤,細料含量越多,回升後之模數達原設計值的比例越少。 | zh_TW |
dc.description.abstract | This research used Maoluo soil which had been liquefied during the Chi-Chi earthquake to study its behavior under shearing after initial liquefaction. The experiment used coarse portion(>No. 200)of the Maoluo soil to make specimens with relative densities of 40%, 60% and 70%. Specimens with a dry density of 1400 kg/m3 and fines contents of 10%, 20% and 40% were also tested. According to test results of the coarse-grained soil, we found that the specimen with a higher relative density can recover its shear resistance at a smaller shear strain after liquefaction and can obtain a higher recovery shear modulus. For soil with fines contents lower than 20%, the specimen with a higher fines content can recover its shear resistance at a smaller shear strain and a higher recovery shear modulus. On the other hand, for fines contents higher than 20%, the specimen with a higher fines content recovers its shear resistance at a higher shear strain. Comparing with the static modulus which is usually used in design the coarse-grained soil with a higher relative density can recover a higher percentage of the original design shear modulus after liquefaction. Similarly, for fines contents of 10%~20%, the soil with a higher fines content can recover a higher percentage of the design shear modulus after liquefaction. For fines contents above 20%, the soil with a higher fines content can recover a less percentage of the original design shear modulus. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:21:48Z (GMT). No. of bitstreams: 1 ntu-98-R95521114-1.pdf: 5181785 bytes, checksum: 3fc22b256177748a25a8243cc0bba827 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
誌謝…………………………………………………………………………I 摘要………………………………………..………………………………II Abstract……………………………………..………..………...…………III 目錄…………………………………………………………..………….. IV 圖目錄…………………………………………………………………...VII 表目錄…………………………………………………………………….XI 第一章 緒論……………………………………………………………….1 1-1 研究動機與目的…………….……………………………………1 1-2 研究內容與方法………….………………………...…………….1 第二章 前人文獻………………………………………………………….3 2-1 反覆動力三軸試驗原理.………………….……...…...………….3 2-2 飽和砂土在不排水狀態下之受剪行為………………...………..4 2-3 飽和砂土受震勁度弱化後之不排水單向加載行為……...……..5 2-4飽和砂土液化後剪應力與剪應變之關係…………..……………6 第三章 試驗內容………………………………………………………...25 3-1 試驗土樣……………………………………...…………………25 3-2 試驗儀器……………………..………………...………………..25 3-2-1靜力三軸試驗儀……………………….…………………25 3-2-2 動力三軸試驗儀……………………….………….…….26 3-3 試驗步驟…………………………...……………...…………….27 3-3-1 重模土壤準備…………………………..……………….27 3-3-2 重模試體安裝……………………………...……………28 3-3-3 試體飽和………………………………………………...29 3-3-4 試體壓密………………………………………………...29 3-4 壓密不排水靜力三軸試驗…………………………...…………29 3-5 動力三軸反覆荷重試驗……………………..………………….30 第四章 試驗結果與分析…………………………………...……………35 4-1 試體應力修正…………………,,,,,,,,,,,,,,,,,,,,,,,,,,……………….35 4-2 不同相對密度之純粗料土壤液化後之剪力阻抗…………...…35 4-3 不同細料含量對土壤液化後剪力阻抗之影響………………...38 4-4 靜態試驗之剪力模數與土壤液化後剪力阻抗回升關係….......40 4-4-1純粗料土壤在液化後剪力阻抗回升與靜態試驗剪力模數比較……….…….…………………….…………………..41 4-4-2 不同細料含量土壤在液化後剪力阻抗回升與靜態試驗剪力模數比較…………….…………..……………………..41 第五章 結論與建議……………………………………………...………76 5-1 結論……………………………………………………………...76 5-2 建議……………………………………………………………...77 參考文獻……………………………………………….…………………78 | |
dc.language.iso | zh-TW | |
dc.title | 飽和砂土液化後之受剪行為 | zh_TW |
dc.title | Shearing Behavior of Saturated Sand after Liquefaction | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李崇正,張文忠 | |
dc.subject.keyword | 動力三軸試驗,初始液化,剪力阻抗回升剪應變,回升剪力模數, | zh_TW |
dc.subject.keyword | dynamic triaxial test,initial liquefaction,shear resistance recovery shear strain,recovery shear modulus,fines content, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-02-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。