Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀文
dc.contributor.authorLannie Wengen
dc.contributor.author翁琳妮zh_TW
dc.date.accessioned2021-06-15T00:20:12Z-
dc.date.available2009-02-18
dc.date.copyright2009-02-18
dc.date.issued2008
dc.date.submitted2009-02-10
dc.identifier.citation[1] H.-Y. Chen, S.-J. Chou, S.-L. Wang, and Y.-W. Chang, 'Novel Wire Density
Driven Full-Chip Routing for CMP Variation Control,' Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 831-838, Nov. 2007.
[2] H.-Y. Chen, S.-J. Chou, and Y.-W. Chang, Coupling-Constrained Dummy
Fill for Density Gradient Minimization,' Proc. VLSI Design/CAD Symp., Pin-
Tung, Taiwan, Aug. 2008.
[3] Y. Chen, P. Gupta, and A. B. Kahng, 'Performance-Impact Limited Area Fill
Synthesis,' Proc. ACM/IEEE Design Automation Conf., pp. 22-27, Jun. 2003.
[4] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, 'Practical Iterated Fill
Synthesis for CMP Uniformity,' Proc. ACM/IEEE Design Automation Conf.,
pp. 671-674, Jun. 2000.
[5] C. Chiang and J. Kawa, Design for Manufacturability and Yield for Nano-Scale
CMOS, pp. 121-124, pp. 194-196, Springer, 2007.
[6] M. Cho, D. Z. Pan, H. Xiang, and R. Puri, 'Wire Density Driven Global
Routing for CMP Variation and Timing,' Proc. IEEE/ACM Int. Conf. on
Computer-Aided Design, pp. 487-492, Nov. 2006.
[7] L. Deng, M. D. F. Wang, K.-Y. Chao, and H. Xiang, 'Coupling-Aware Dummy
Metal Insertion for Lithography,' Proc. ACM/IEEE Asia South Pacific Design
Automation Conf., pp. 13-18, Jan. 2007.
[8] K.Y.Y. Doong, K.-C. Lin, T.-C. Tseng, Y.C. Lu, S.C. Lin, L.J. Hung, P.S. Ho,
S. Hsieh, K.L. Young and M.S. Liang, 'Electrical Characterization of Model-
based Dummy Feature Insertion in Cu Interconnects,'Proc. Int. Conf. on Mi-
croelectronic Test Structures, pp. 87-92, Mar. 2004.
[9] http://www.eda.ncsu.edu/wiki/FreePDK45
[10] IBM: http://www.ibm.com
[11] A.B. Kahng and K. Samadi, 'CMP Fill Synthesis: A Survey of Recent Studies.'
IEEE Trans. on Computer-Aided Design, vol. 27, no. 1, pp. 3-19, Jan. 2008.
[12] A.B. Kahng, K. Samadi, and P. Sharma, 'Study of Floating Fill Impact on
Interconnect Capacitance,' IEEE Int. Symp. on Quality of Electronic Design,
pp. 691-696, Mar. 2006.
[13] A.B. Kahng and R.O. Topaloglu, 'A DOE Set for Normalization-Based Extrac-
tion of Fill Impact on Capacitances,' IEEE Int. Symp. on Quality of Electronic
Design, pp. 467-474, Mar. 2007.
[14] J.A. Khan and S.M. Sait, 'Fast Force-directed/simulated Evolution Hybrid for
Multiobjective VLSI Cell Placement,' Proc. Int. Symp. on Circuits and Sys-
tems, vol. 5, pp. 53-56, May. 2004.
[15] J.A. Khan and S.M. Sait, 'Fuzzy Aggregating Functions for Multiobjective
VLSI Placement,' IEEE Int. Conf. on Fuzzy Systmes, May. 2002.
[16] A. Kurokawa, T. Kanamoto, T. Ibe, A. Kasebe, W. F. Chang, T. Kage, Y. In-
oue, and H. Masuda, 'Dummy Filling Methods for Reducing Interconnect Ca-
pacitance and Number of Fills,' IEEE Int. Symp. on Quality of Electronic
Design, pp. 586-591, Mar. 2005.
[17] S. Lakshminarayanan, P. Wright, J. Pallinti* 'Design Rule Methodology to
Improve the Manufacturability of the Copper CMP Process,'IEEE Proc. Int.
Interconnect Technology Conf., pp. 99-101, Jun. 2002.
[18] K.-H. Lee, J.-K. Park, Y.-N. Yoon, D.-H. Jung, J.-P. Shin, Y.-K. Park, and
J.-T. Kong, 'Analyzing the effects of floating dummy-fills - from feature scale
analysis to full-chip RC extraction to full-chip RC extraction,' IEEE Trans. on
Electron Devices, pp. 31.3.1-31.3.4, Dec. 2001.
[19] C.-W. Lin, M.-C. Tsai, K.-Y. Lee, T.-C. Chen, T.-C. Wang, and Y.-W. Chang,
'Recent Research and Emerging Challenges in Physical Design for Manufac-
turability Reliability,' Proc. ACM/IEEE Asia South Pacific Design Automation
Conf., pp. 238-243, Jan. 2007.
[20] Magma: http://www.magma-da.com
[21] G. Nanz and L.E. Camilletti, 'Modeling of Chemical-Mechanical Polishing:
A Review,' IEEE Trans. on Semiconductor Manufacturing,pp. 382-389, Nov.
1995.
[22] F. Nekoogar, Timing Verification of Appliction-Specific Integrated Circuits,
pp. 1-15, Prentice Hall PTR.
[23] X. Qi, A. Gyure, Y. Luo, S. C. Lo, M. Shahram, and K. Singhal, 'Measurement
and Characterization of Pattern Dependent Process Variations of Intercon-
nect Resistance, Capacitance and Inductance in Nanometer Technologies,'Proc.
ACM Great Lakes Symp. on VLSI, pp. 14-18, Apr. 2006.
[24] http://research.cs.tamu.edu/
[25] B.E.Stine, 'A Closed-Form Analytical Model for ILD Thickness Variation in
CMP Process,' Proc. Int. CMP-MIC Conf., pp. 266-273. Feb. 1997.
[26] B. E. Stine, D. S. Boning, J. E. Chung, L. Camilletti, F. Kruppa, E. R.Equi,
W. Loh, S. Prasad, M. Muthukrishnan, D. Towery, M. Berman, and A. kapoor,
'The Physical and Electrical Effects of Metal-Fill Patterning Practices for Ox-
ide Chemical-Mechanical Polishing Processes ,' IEEE Trans. on Electron De-
vices, vol. 45, no. 3, pp. 665-679, Mar. 1998.
[27] http://www.simtech.a-star.edu.sg/
[28] R. Tian, D. F. Wong, and R. Boone, 'Model-Based Dummy Feature Place-
ment for Oxide Chemical-Mechanical Polishing Manufacturability,' Proc.
ACM/IEEE Design Automation Conf., pp. 667-670, Jun. 2000.
[29] http://www.tsmc.com
[30] H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. F. Wang, 'Dummy Fill
Density Analysis with Coupling Constraints,' Proc. ACM Int. Symp. on Phys-
ical Design, pp. 3-9, Mar. 2007.
[31] W. Yu, M. Zhang, and Z. Wang, “Efficient 3-D Extraction of Interconnect Ca-
pacitance Considering Floating Metal Fills With Boundary Element Method,'
IEEE Trans. on Computer-Aided Design, vol. 25, no. 1, pp. 12-18, Jan. 2006.
[32] P. Zarkesh-Ha, S. Lakshminarayann, K. Doniger, W. Loh, and P. Wright, 'Im-
pact of Interconnect Pattern Density Information on a 90nm Technology ASIC
Design Flow,'IEEE Int. Symp. on Quality of Electronic Design, pp. 405-409,
Mar. 2003.
[33] P. Zarkesh-Ha, K. Doniger, W. Loh, P. Wright, 'Prediction of interconnect pat-
tern density distribution -derivation, validation, and applications,'Proc. Int.
Workshop on System-level Interconnect Prediction, pp. 85-91, Apr. 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41473-
dc.description.abstract虛擬金屬填充技術主要應用於晶片設計的後繞線階段,在現今晶圓製程相當著名,主要用來確保晶片內金屬線路密度的一致性並且降低晶片在化學機械研磨平坦化過程中所產生的厚度差異性。我們也必須確保虛擬金屬填充過程中的梯度密度,確保密度在一個特定大小的區域中的厚度差異性不能超過一定的值。這個值通常都由晶片製造廠建議。虛擬金屬填充將導致耦合電容的增加,過高的耦合電容將造成時間延遲近而影響整個晶片的效能。在本論文中,我們提出一套虛擬金屬填充設計流程與45度角虛擬金屬填充的貪婪演算法和強度導向演算法,此設計流程包括設計準備階段、虛擬區域抽取階段、以及虛擬線路填充階段。實驗結果顯示,強度導向演算法的45度電容模型擺放,將有效減少1.9%~14.1%的耦合電容。同時我們也用90度和180度虛擬金屬填充,結果顯示影響晶片效能13 到344兆分之一秒。實驗證實我們所提供的方法,有效減少耦合電容並維持晶片運作效能。zh_TW
dc.description.abstractDummy metal insertion is one of the latest methods to be commonly used in
the post-layout step during design implementation. It is used to keep the metal den-
sity within the chip area at a constant value and reduce the variation in thickness
of chemical-mechanical planarization (CMP) [5]. During metal fill insertion, the
gradient of metal density should be also considered to ensure that the density vari-
ation is not above a threshold within a sliding window. This threshold is typically
recommended by foundry [29]. However, the coupling capacitance is significantly
increased by dummy metal insertion, and the increased coupling capacitance may
cause timing failure in the chip's performance. This thesis proposes one metal fill
insertion design flow and two algorithms, greedy and force-directed, for inserting
the 45-degree metal fills (diagonal fills). The design flow includes three stages: the
design preparation stage, the dummy fill region extraction stage and the dummy fill
insertion stage. The force-directed algorithm which is applied in the dummy fill in-
sertion stage considers the coupling capacitance as a weight and avoids the impact
of the timing slack.
Diagonal metal fills are simulated and it is concluded that they have less
capacitance than 0-degree metal fills (parallel fills) and 90-degree metal fills (per-
pendicular fills). Compared with 0- and 90-degree metal fills, 45-degree metal fills
could reduce capacitance by 1.9%{14.1%. TNS (total negative slack) and WNS
(worst negative slack) [22] are also maintained with 45-degree metal fills, whereas
0- and 90-degree metal fills increase the timing delay from 13 pico-seconds in ex-
perimental test case of design3 [9] to 344 pico-seconds in experimental test case
of design6. Design3 is the design with clock cycle of 2000 pico-seconds, whereas
design6 is the design with clock cycle of 14000 pico-seconds. Experimental results
based on commercial tools demonstrate that our proposed force-directed methods
can decrease the coupling capacitance and improve timing performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:20:12Z (GMT). No. of bitstreams: 1
ntu-97-P94943013-1.pdf: 28091184 bytes, checksum: e0c4aa6c8782c94102acb10e08b39ef1 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgements i
Abstract (Chinese) ii
Abstract iii
List of Tables vii
List of Figures viii
Chapter 1. Introduction 1
1.1 Chemical-Mechanical Planarization . . . . . . . . . . . . . . . . . . . . . 2
1.2 Coupling Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dummy Metal Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Diagonal Dummy Metal Pattern . . . . . . . . . . . . . . . . . . . 6
1.3.2 Different Dummy Patterns of Coupling Comparison . . . . . . . . 7
1.4 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Different Patterns of Dummy Fills . . . . . . . . . . . . . . . . . . 12
1.4.2 Coupling Threshold for Dummy Insertion . . . . . . . . . . . . . . 12
1.4.3 Multilevel Analysis of Gradient Constraint . . . . . . . . . . . . . 13
1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 2. Problem Definition 17
2.1 Gradient Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Dummy Region Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Slack Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Elmore Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Dummy Metal Insertion Problem . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 3. Algorithm 22
3.1 Design Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Partition Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Density Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Multilevel Analysis of Gradient Density Constraint . . . . . . . . . 24
3.1.4 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Dummy Fill Region Generation . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Dummy Region Extraction . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Dummy Region Density Assignment . . . . . . . . . . . . . . . . . 30
3.3 Dummy Fill Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Force-Directed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 4. Experimental Results 37
Chapter 5. Conclusions and Future Works 46
Bibliography 48
dc.language.isoen
dc.subject違反序最大延遲zh_TW
dc.subject虛擬填充zh_TW
dc.subject耦合電容zh_TW
dc.subject梯度密度zh_TW
dc.subject違反時序總計值zh_TW
dc.subjectcoupling capacitanceen
dc.subjectworst negative slacken
dc.subjecttotal negative slacken
dc.subjectgradient densityen
dc.subjectdummy fill insertionen
dc.title45度虛擬線路填充降低化學機械研磨平坦化金屬耦合電容zh_TW
dc.titleCoupling Capacitance Minimization by 45-Degree Metal Fill Insertion in Chemical-Mechanical Planarizationen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡坤諭,江介宏
dc.subject.keyword虛擬填充,耦合電容,梯度密度,違反時序總計值,違反序最大延遲,zh_TW
dc.subject.keyworddummy fill insertion,coupling capacitance,gradient density,total negative slack,worst negative slack,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2009-02-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
27.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved