請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41452完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | CHIA CHUN HSU | en |
| dc.contributor.author | 徐嘉鈞 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:19:33Z | - |
| dc.date.available | 2012-02-18 | |
| dc.date.copyright | 2009-02-18 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-02-12 | |
| dc.identifier.citation | [1] Carlson, Niel. A. Foundations of Physiological Psychology. Needham Heights, Massachusetts: Simon & Schuster. pp. 36
[2] Cotran RS, Kumar V, Collins T. Robbins Pathologic Basis of Disease, 6th Edition. W.B. Saunders Company, 1999 [3] 吳進安:基礎神經學。合記出版社 1997; pp. 319-23. [4] Chaudhry V, Glass JD, Griffin JW. Wallerian degeneration in peripheral nerve disease. Neurol. Clin. 10:613–27, 1992 [5] Fields RD, Ellisman MH. Axons regenerated through silicone tube splices. I. Conduction properties. Exp. Neurol 92:48–60, 1986 [6] Chen YS. Development of a multiple-lumen nerve cuff utilizing growth stimulant for controlled regeneration. Dissertation in Iowa State University, 1998. [7] Brushart TM. Preferential reinnervation of motor nerves by regenerating motor axons. Journal of Neuroscience. 1988; 8(3): 1026-31. [8] Aldskogius H, Molander C, Persson J, Thomander L. Specific and nonspecific regeneration of motor axons [9] Millesi H. Interfascicular nerve grafting. Orthopedic Clinics of North America. 1981; 12(2): 287-301. [10] Cabaud HE, Rodkey WG, McCarroll HR. Peripheral nerve injuries: studies in higher nonhuman primates. Journal of Hand Surgery American Volume. 1980; 5(3): 201-6. [11] Nishihira S, McCaffrey TV. Repair of motor nerve defects: comparison of suture and fibrin adhesive techniques. Otolaryngology Head & Neck Surgery. 1989; 100(1): 17-21 [12] Bailes JE, Cozzens I, Hudson JW, Kline AR, Ciric DG, Gianaris P, Bernstein LP, Hunter D. Laser-assisted nerve repair in primates. Journal of Neurosurgery. 1989; 71(2): 266-72 [13] White JC, Hamlin H. New use of tantalum in nerve suture, control of neuroma formation and prevention of regeneration after thoracic sympathectomy illustratin of technical procedures. Journal of Neurosurgery. 1945; 2: 402-13. [14] Seckel BR. Enhancement of peripheral nerve regeneration. Muscle & Nerve. 1990; 13(9): 785-800. [15] Doolabh VB, Hertl MC, Mackinnon SE. The role of conduits in nerve repair: a review. Reviews in the Neurosciences. 1996; 7(1): 47-84. [16] ZhangF, Blain B, Beck J, ZhangJ, Chen Z, Chen ZW, Lineaweaver WC. Autogenous venous graft with one-stage prepared Schwann cells as a conduit for repair of longseg mental nerve defects. J Reconstr Microsurg 18:295–300, 2002 [17] Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Clin. Plast. Surg. 26: 617–28, 1999 [18] Jansen K, van der Werff JF, van Wachem PB, Nicolai JP, de Leij LF, van Luyn MJ. A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials. 2004; 25(3): 483-9. [19] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research. 1999; 47(1): 8-17. [20] Lo H, Kadiyala S, Guggino SE, Leong KW. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. Journal of Biomedical Materials Research. 1996; 30(4): 475-84. [21] Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996; 17(14): 1417-22. [22] Illum L., Chitosan and its use as a pharmaceutical excipient. Pharm Res 15-9:1326-1331, 1998 [23] Errington N., Harding S. E. et al., Hydrodynamic characterization of chitosans varying in molecular weight and degree of acetylation. Int J Biol Macromol 15:119-117, 1993 [24] Hirano S., Tsuchida H., Nagao N., N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10(8):574-576, 1989 [25] Dixon M., Edwin C., et al., Enzymes, 3rd ed., Academic Press, New York 1976 [26] Francis J. K., Matthew H. W.T., Application of Chitosan-Based Polysaccharide Biomaterial in Cartilage Tissue Engineering: a Review. Biomaterials 21:2589–2598, 2000 [27] Pandit A, Ashar R, Feldman D, [Investigation of acidic fibrobla st growth factor delivered through a collagen scaffold for the treatmen t of full-thickness skin defects in a rabbit model], Plast Reconstr Surg, 101, 766-775, 1998. [28] Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D 1996 Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177-86 [29] Flaumenhaft R, Moscatelli D, Rifkin DB 1990 Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 111:1651-9 [30] Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM 1991 Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841-8 [31] McKeehan WL, Kan M 1994 Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev 39:69-81; discusison 81-2 [32] Rafael A., Bruce H., and Susan S., An overview of polylactides as packaging materials. Macromol. Biosci., 4: 835-64, 2004 [33] Vert M, Li S, Garreau H. More about the degradation of LA/GA derived matrices in aqueous media. Journal of Controlled Release 16: 15-26, 1991 [34] Srinivasan C., Katare Y. K., Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J Microenca. 22: 127-38, 2005 [35] Ciardelli G., Chiono V., Materials for peripheral nerve regeneration. Macromol. Biosci. 6: 13-26, 2006 [36] Cleland J.L., Jones A.J.S., Stable formulations of recombinant human growth hormone and interferon-g for microencapsulation in biodegradable microspheres, Pharm. Res. 13: 1464-75, 1996 [37] Raghuvanshi R.S., Ganga S., Misra A., Mehta S., Stabilisation of tetanus toxoid 54 against dichloromethane, Control Release Bioact. Mater. 23: 859- 60, 1996 [38] Lee E. S., Keun-Hong Park K. H., Kang D., Park I. S., Min H. Y., Lee D. H., Kim S., Kim J. H., Na K., Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres. Biomaterials 28: 2754-62, 2007 [39] Arakawa T., Kita Y., Carpenter J.F., Protein–solvent interactions in pharmaceutical formulations, Pharm. Res. 8: 285-91, 1991 [40] Alonso M.J., Gupta R.K., Min C., Siber G.R., Langer R., Biodegradable microspheres as controlled-release tetanus toxoid delivery systems, Vaccine 12: 299-306, 1994 [41] Zhu G., Mallery S.R., Schwendeman S.P.. Stabilisation of proteins encapsulated in injectable poly(lactide-co-glycolide), Nat. Biotechnol. 18: 52-7, 2000 [42] Hallas-Mfhler K., Petersen K., Schlichtkrull J., Crystalline and amorphous insulin–zinc compounds with prolonged action, Science 116: 394-8, 1952. [43] Rodriguez FJ, Gomez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 20:1489–500, 1999 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41452 | - |
| dc.description.abstract | 神經導管接合術是利用顯微手術將神經兩斷端縫入生醫材料所製備之神經導管以橋接神經斷裂的兩端,神經可藉由軸突的再生而重新連接缺口兩端的神經使功能恢復,導管可減少神經拉扯時造成的張力並引導軸突的再生,亦可承載神經生長因子促進神經再生,此外,也可以將阻礙神經再生的細胞及其分泌物阻擋在管外。本研究引入了酸性纖維母細胞生長因子作為誘導神經再生之因子,以聚乳酸微小球作為酸性纖維母細胞生長因子的藥物釋系統,幾丁聚醣做為製作神經導管之材料,並以冷凍乾法與蘸濕浸泡法製備出含有兩種不同結構高分子塊材,再將高分子塊材捲製成特殊多層的導管,製作具有多層孔隙之新型神經再生導管。
實驗中,以SDS膠體電泳法尋求最佳包覆酸性纖維母細胞生長因子過程中的最佳穩定性條件。利用牛血清蛋白作為模組藥求得微小球的釋放模式。並於3T3纖維母細胞的活性實驗中求得最佳劑量。由ELSA試驗中映證酸性纖維母細胞生長因子能通過包覆過程並於微小球中釋放出。於掃描式電子顯微鏡觀察幾丁聚醣神經導管結構。 實驗結果顯示:在有機相的選擇上使用乙酸乙酯較二氯甲烷為佳,並於酸性纖維母細胞生長因子中添加聚離氨基酸有助於酸性纖維母細胞生長因子在包覆過程中保持其活性。利用牛血清蛋白的釋放實驗可知道所製備之聚乳酸微小球可保持14天以上的持續釋放。由3T3纖維母細胞的活性實驗中得知最佳的細胞活性劑量為1-10 ng/ml。在對六小時及兩天之釋放樣品進行ELISA試驗求得樣品釋放濃度約為0.7 ng/ml。在電子顯微鏡觀察下可發現所製備之微小球能均勻散布在導管之多孔結構中,而利用冷凍乾燥法和醮濕浸泡所製備出之神經導管也確實具備外側無孔隙之膜結構與內側滿布100μm孔隙之多孔狀結構。 | zh_TW |
| dc.description.abstract | Nerve bridging is suture a biomaterial-made conduit and to overpass the damaged nerve end to end with microsurgery. Peripheral nerve could be bridged between the proximal nerve and the distal stump to restore the function. Nerve conduits could eliminate tension at the healing site and induce the regeneration of axons. Nerve conduits also could permit neurobiological recovery to enhance neural regeneration and stop cells and their secretions from obstructing neural regeneration. In this study, we provide acid fiberblast growth factor to induce the nerve to be regenerated and use PDLLA microsphere for drug delivery system. Chitosan was used to fabricate the nerve conduit. Combining Freeze-Drying method and dipping in the wet soaking method prepare out the conduit containing two kinds structure , and then rolled the material to make nerve conduit with pore and multi-layered.
In the experiment, analyze with SDS page method to know the most stable environment for capsule acid fiberblast growth factor. Use bovine serum albumin as model drug to find the release profile of PDLLA microsphere. And test the best dosage in the cell activity experiment of 3T3 fiberblast cell. Prove acid fiberblast growth factor can be released form the PDLLL microsphere in the ELSA test. Observe chitosan nerve conduit structure by the scanning electron microscope. In The experimental result , ethyl acetate is better at the choice of organic phase than methylene chloride, and add ploy-lysine can promote the stable of the acid fiberblast growth factor undergo double emulsion process. Use bovine serum albumin as model drug to find the release profile of PDLLA microsphere. The result indicate PDLLA microsphere can keep more than 14 day releasing. the best activity dosage of cell is 1-10 ng/ml in the cell activity experiment of 3T3 fiberblast cell.for the release sample of six hours and two days, about 0.7 ng/ml acid fiberblast growth factor can be inspected in ELISA test. We can find the PDLLA microsphere can be kept in the porous layer of the chitosan nerve conduit.Combining Freeze-Drying method and dipping in the wet soaking method can prepare out the conduit containing two kinds structure whose non-porous film layer and 100μm pore sponge layer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:19:33Z (GMT). No. of bitstreams: 1 ntu-98-R95548034-1.pdf: 3068861 bytes, checksum: afd27011815469b6cf0193ace07a71ef (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
謝誌 …………………………………………………………………………………… I 摘要 ……………………………………………………………………………………II Abstract ……………………………………………………………………………… III 目錄 …………………………………………………………………………………… V 圖目錄 ……………………………………………………………………………… VII 第一章 緒論 .............................................................................. 1 第一節 周邊神經的生理學.................................................................................. 1 第二節 周邊神經的損傷...................................................................................... 2 第三節 周邊神經的再生...................................................................................... 2 第四節 協助神經再生的方法.............................................................................. 3 第五節 神經導管種類及應用.............................................................................. 5 第六節 製備神經導管之方式.............................................................................. 5 第七節 幾丁聚醣.................................................................................................. 7 第八節 纖維母細胞生長因子(FGF).................................................................... 8 第九節 聚乳酸(PDLLA) ...................................................................................... 9 第十節 明膠(Gelatin) ......................................................................................... 11 第十一節 多重乳化法........................................................................................ 11 第二章 研究動機與目的 ........................................................ 15 第三章 實驗材料與方法 ........................................................ 16 第一節 實驗藥品................................................................................................ 16 第二節 實驗儀器................................................................................................ 18 第三節 實驗溶液配製........................................................................................ 19 第四節 實驗方法................................................................................................ 22 第一項 aFGF穩定性試驗----SDS PAGE ................................................... 22 第二項 雙乳化法PDLLA微小球製備與觀測 ........................................... 23 V 第三項 微小球藥物釋放實驗.................................................................... 24 第四項 aFGF微量定量分析方法----ELISA test ....................................... 24 第五項 aFGF 細胞活性分析-MTS test .................................................... 25 第六項 雙結構Chitosan 神經導管製作 ................................................... 26 第七項 Chitosan 神經導管結構之觀察 ................................................... 28 第四章 結果與討論 ................................................................ 29 第一節 aFGF穩定性試驗----SDS PAGE ........................................................... 29 第二節 雙乳化法PDLLA微小球製備與觀測 ................................................... 31 第三節 微小球藥物釋放實驗............................................................................ 32 第四節 aFGF 細胞活性分析-MTS test ............................................................ 33 第五節 ELISA TEST .......................................................................................... 34 第六節 Chitosan 神經導管結構之觀測 ........................................................... 36 第五章 結論 ............................................................................ 41 第六章 參考文獻 .................................................................... 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 微球體 | zh_TW |
| dc.subject | 神經導管 | zh_TW |
| dc.subject | 酸性纖維母細胞生長因子 | zh_TW |
| dc.subject | 聚孔酸 | zh_TW |
| dc.subject | Chitosan | en |
| dc.subject | Microsphere | en |
| dc.subject | Nerve Conduit | en |
| dc.subject | Acid Fiberblast Growth Factor | en |
| dc.subject | PDLLA | en |
| dc.title | 具含酸性纖維母細胞生長因子微小球神經導管之研究 | zh_TW |
| dc.title | A Study on Chitosan Nerve Conduit Loading aFGF Microsphere | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鐘次文,劉得任,黃意真 | |
| dc.subject.keyword | 酸性纖維母細胞生長因子,聚孔酸,幾丁聚醣,神經導管,微球體, | zh_TW |
| dc.subject.keyword | Acid Fiberblast Growth Factor,PDLLA,Chitosan,Nerve Conduit,Microsphere, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-02-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
