Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源
dc.contributor.authorWen-Kai Tuen
dc.contributor.author杜文凱zh_TW
dc.date.accessioned2021-06-15T00:18:53Z-
dc.date.available2011-03-10
dc.date.copyright2009-03-10
dc.date.issued2009
dc.date.submitted2009-02-25
dc.identifier.citation1. Abu El-Rub, Z., Bramer, E.A. and Brem, G., “Experimental Comparison of Biomass Chars with Other Catalysts for Tar Reduction,” Fuel, 87(10-11), 2243-2252 (2008).
2. Acikgoz, C., Onay, O. and Kockar, O.M., “Fast Pyrolysis of Linseed: Product Yields and Compositions,” Journal of Analytical and Applied Pyrolysis, 71(2), 417-429 (2004).
3. Asadullah, M., Ito, S.I., Kunimori, K., Yamada, M. and Tomishige, K., “Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-bed Reactor,” Journal of Catalysis, 208(2), 255-259 (2002).
4. Asadullah, M., Miyasawa, T., Ito, S.I., Kunimori, K. and Tomishige, K., “Demonstration of Real Biomass Gasification Drastically Promoted by Effective Catalyst,” Applied Catalysis A: General, 246(1), 103-116 (2003).
5. Atutxa, A., Aguado, R., Gayubo, A.G., Olazar, M. and Bilbao, J., “Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor,” Energy & Fuels, 19(3), 765-774 (2005).
6. Azhar Uddin, Md., Tsuda, H., Wu, S. and Sasaoka, E., “Catalytic Decomposition of Biomass Tars with Iron Oxide Catalysts,” Fuel, 87(4-5), 451-459 (2008).
7. Bakker, R.R. and Jenkins, B.M., “Feasibility of Collecting Naturally Leached Rice Straw for Thermal Conversion,” Biomass and Bioenergy, 25(6), 597-614 (2003).
8. Beis, S. H., Onay, O. and Kockar, O. M., “Fixed-bed Pyrolysis of Safflower Seed: Influence of Pyrolysis Parameters on Product Yields and Compositions,” Renewable Energy, 26(1), 21-32 (2002).
9. Bhattacharya, S.C., Salam, P.A. and Sharma, M., “Emissions from Biomass Energy Use in Some Selected Asian Countries,” Energy, 25(2), 169-188 (2000).
10. Bleeker, M.F., Kersten, S.R.A. and Veringa H.J., “Pure Hydrogen from Pyrolysis Oil Using the Steam-iron Process,” Catalysis Today, 127(1-4), 278-290 (2007).
11. Bond G.C., Heterogeneous Catalysis: Principles and Applications, 2nd Ed., Oxford Science Publications, New York, pp. 2-10 (1987).
12. Bridgwater, A.V., “Renewable Fuels and Chemicals by Thermal Processing of Biomass,” Chemical Engineering Journal, 91(2-3), 87-102 (2003).
13. Caldeira, M.I.K., Benford, G., Criswell, D.R., Green, C., Herzog, H., Jain, A.K., Kheshgi, H.S., Lackner, K.S., Lewis, J.S., Lightfoot, H.D., Manheimer, W., Mankins, J.C., Mauel, M. E., Perkins, L.J., Schlesinger, M.E., Volk, T. and Wigley, T.M.L., “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” Science, 298(5595), 981-987 (2002).
14. Cao T., Wang, Y., Riley, J.T. and Pan, W.P., “A Novel Biomass Air Gasification Process for Producing Tar-free Higher Heating Value Fuel Gas,” Flue Process Technology, 87(4), 343-353 (2006).
15. Chen, G., Andries, J. and Spliethoff, H., “Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel Gas Production,” Energy Conversion and Management, 44(14), 2289-2296 (2003a).
16. Chen, G., Andries, J., Luo, Z. and Spliethoff. H., “Biomass Pyrolysis/Gasification for Product Gas Production: the Overall Investigation of Parametric Effects,” Energy Conversion and Management, 44(11), 1875-1884 (2003b).
17. Cheng, H.H., Chen S.S., Wu, Y.C. and Ho, D.L., “Non-thermal Plasma Technology for Degradation of Organic Compounds in Wastewater Control: A Critical Review,” Journal of Environmental Engineering and Management, 17(6), 427-433 (2007).
18. Chum, H.L. and Overend, R.P., “Biomass and Renewable Fuels,” Fuel Processing Technology, 71(1-3), 187-195 (2001).
19. Daifullish, A.A.M., Yakout, S.M. and Elreefy, S.A., “Adsorption of Fluoride in Aqueous Solutions Using KMnO4-modified Activated Carbon Derived from Steam Pyrolysis of Rice Straw,” Journal of Hazardous Materials, 147(1-2), 633-643 (2007).
20. Das, P., Sreelatha, T. and Ganesh, A., “Bio Oil from Pyrolysis of Cashew Nut Shell-characterisation and Related Properties,” Biomass & Bioenergy, 27(3), 265-275 (2004).
21. Demirbas, A., “Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals,” Energy Conversion and Management, 42(11), 1357-1378 (2001).
22. Demirbas, A., “Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield,” Energy Conversion and Management, 43(7), 897-909 (2002).
23. Demirbas, A., “Determination of Calorific Values of Bio-chars and Pyro-oils from Pyrolysis of Beech Trunkbarks,” Journal of Analytical and Applied Pyrolysis, 72(2), 215-219 (2004).
24. Demirbas, A. H., Sahin-Demirbas, A. and Demirbas, A., “Liquid Fuels from Agricultural Residues via Conventional Pyrolysis,” Energy Sources, 26(9), 821-827 (2004).
25. Demirbas, A., “Relationship between Initial Moisture Content and the Liquid Yield from Pyrolysis of Saw dust,” Energy Sources, 27(9), 823-830 (2005).
26. Devi, T.G. and Kannon, M.P., “Calcium Catalysis in Air Gasification of Cellulosic Chars,” Fuel, 77(15), 1825-1830 (1998).
27. Drift, A.V.D., Doorn, J.V. and Vermeulen, J.W., “Ten Residual Biomass Fuels for Circulating Fluidized-bed Gasification,” Biomass and Bioenergy, 20(1), 45-56 (2001).
28. Engelen, K., Zhang, Y., Draelants, D.J. and Baron, G.V., “A Novel Catalytic Filter for Tar Removal from Biomass Gasification Gas: Improvement of the Catalytic Activity in Presence of H2S,” Chemical Engineering Science, 58(3), 665-670 (2003).
29. FAOSTAT Database Collections, http://faostat.fao.org/.
30. Ferdous, D., Dalai, A.K., Bej, S.K., Thring R.W. and Bakhshi, N.N., “Production of H2 and Medium Btu Gas via Pyrolysis of Lignins in a Fixed-bed Reactor,” Fuel Process Technology, 70(1), 9-26 (2001).
31. Fogler, H.S., Elements of Chemical Reaction Engineering, 3rd ed., Prentice Hall PRT, Upper Saddle River, New Jersey, pp. 592 (1999).
32. Fong, M., Wong, J.W.C. and Wong, M.H., “Review on Evaluation of Compost Maturity and Stability of Solid Waste,” Shanghai Environmental Sciences, 18(2), 91-93 (1999).
33. Franco, C., Pinto, F., Gulyurtlu, I. and Cabrita, I., “The Study of Reactions Influencing the Biomass Stream Gasification Process,” Fuel, 82(7), 835-842 (2003).
34. Gannon, R.E., “Coal Pyrolysis in an Entrained Flow Slagging Gasifier,” Seventh Annual Energy-Sources Technology Conference and Exhibition, New Orleans, Los Angeles (1984).
35. Garcia, X.A., Alarcon, N.A. and Gordon, A.L., “Steam Gasification of Tars Using CaO Catalyst,” Fuel Processing Technology, 58(2-3), 83-102 (1999).
36. Garcia, G.A., Gregoria, A., Franco, C., Pinto, F., Boavida, D. and Gulyurtlu, I., “Unconverted Chars Obtained during Biomass Gasification on a Pilot-scale Gasifier as a Source of Activated Carbon Production,” Bioresource Technology, 88(1), 27-32 (2003).
37. Garcia, I.P., Cabanillas, A. and Sanchez, J.M., “Gasification of Leached Orujillo (Olive Oil Waste) in a Pilot Plane Circulating Fluidised Bed Reactor. Preliminary Results,” Biomass and Bioenergy, 27(2), 183-194 (2004).
38. Gercel, H.F., “The Production and Evaluation of Bio-oils from the Pyrolysis of Sunflower-oil Cake,” Biomass & Bioenergy, 23(4), 307-314 (2002).
39. Gonzalez, J. F., Ramiro, A., Gonzalez-Garcia, C. M., Ganan, J., Encinar, J. M., Sabio, E. and Rubiales, J., “Pyrolysis of Almond Shells. Energy Applications of Fractions,” Industrial & Engineering Chemistry Research, 44(9), 3003-3012 (2005).
40. Guddeti, R.R., Knight, R. and Grossmann, E.D., “Depolymerization of Polyethylene Using Induction-coupled Plasma Technology,” Plasma Chemistry and Plasma Processing, 20(1), 37-64 (2000).
41. Gullu, D., “Effect of Catalyst on Yield of Liquid Products from Biomass via Pyrolysis,” Energy Sources, 25(8), 753-765 (2003).
42. Hanaoka, T., Inoue, S., Uno, S., Ogi, T. and Minowa, T., “Effect of Woody Biomass Compounds on Air-steam Gasification,” Biomass and Bioenergy, 28(1), 69-76 (2005).
43. He, D., Ding, Y., Luo, H. and Li, C., “Effects of Zirconia Phase on the Synthesis of Higher Alcohols Over Zirconia and Modified Zirconia,” Journal of Molecular Catalysis A: Chemical, 208(1-2), 267-271 (2004).
44. Hlina, M., Hrabovsky, M., Kopecky, V., Konrad, M., Kavka, T. and Skoblja, S., “Plasma Gasification of Wood and Production of Gas with Low Content of Tar,” Czechoslovak Journal of Physics, 56, B1179-B1184 (2006).
45. Huang, G.F., Wong, J.W.C., Wu, Q.T. and Nagar, B.B., “Effect of C/N on Composting of Pig Manure with Sawdust,” Waste Management, 24(8), 805-813 (2004).
46. Huang, H.C., Chang, C.Y., Chen, Y.H., Shie, J.L., Lin, J.P. and Wu, C.H., “Resources Recovery of Waste Rayon by Pyrolysis: Kinetics Study,” Journal of the Chinese Institute of Chemical Engineering, 35(6), 623-632 (2004).
47. Huang, Y.F., Kuan, W.H., Lo, S.L. and Lin, C.F., “Total Recovery of Resources and Energy from Rice Straw using Microwave-induced Pyrolysis,” Bioresource Technology, 99(17), 8252-8258 (2008).
48. Hubbert M.K., “Nuclear Energy and the Fossil Fuels,” Shell Development Company, Exploration and production research division, Publication No.95, Houston, Texas (1956).
49. International Energy Agency, “Renewables in Global Energy Supply,” An IEA Fact Sheet, P1 (2003).
50. Iranzo, M., Cañizares, J.V., Roca-Perez, L., Sainz-Pardo, I., Mormeneo, S. and Boluda, R., “Characteristics of Rice Straw and Sewage Sludge as Composting Materials in Valencia (Spain),” Bioresource Technology, 95(1), 107-112 (2004).
51. Jenkins, G.M., Holland, L.R., Maleki, H. and Fisher, J., “Continuous Production of Fullerenes by Pyrolysis of Acetylene at a Glassy Carbon Surface,” Carbon, 36(12), 1725-1727 (1998).
52. Katou, K., Asou, T., Kurauchi, Y. and Sameshima, R., “Melting Municipal Solid Waste Incineration Residue by Plasma Melting Furnace with a Graphite Electrode,” Thin Solid Films, 386(2), 183-188 (2001).
53. Kim, S.W., Park, H.S. and Kim, H.J., “100 kW Steam Plasma Process for Treatment of PCBs (polychlorinated biphenyls) Waste,” Vacuum, 70(1), 59-66 (2003).
54. Klose, W. and Wolki, M., “On the Intrinsic Reaction Rate of Biomass Char Gasification with Carbon Dioxide and Steam,” Fuel, 84(7-8), 885-892 (2005).
55. Kobayashi, H., Yoshikawa, K. and Shioda, S., “Coal/Waste Gasification Power Generation System Using High Temperature Air,” Proceeding of the 2nd International High Temperature Air Combustion Symposium, Energy & Resource Laboratories, Hsinchu, Taiwan, E1.1-E1.7 (1999).
56. Kolbitsch, P., Pfeifer, C. and Hofbauer, H., “Catalytic Steam Reforming of Model Biogas,” Fuel, 87(6), 701-706 (2008).
57. Lange, J.P., “Methanol Synthesis: a Short Review of Technology Improvements,” Catalysis Today, 64(1-2), 3-8 (2001).
58. Lee, J., Gao, W., Li, Z., Hodgson, M., Metson, J., Gong, H. and Pal, U., “Sputtered Deposited Nanocrystalline ZnO Films: a Correlation between Electrical, Optical and Microstructural Properties,” Applied Physics A-Materials Science & Processing, 80(8), 1641-1646 (2005).
59. Levenspiel, O., Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, Third Avenue, New York, pp. 28, 47 (1999).
60. Li, C.T., Yang, R.B., Shih, M.L., Chen, C.Y. and Hsieh, L.T., “Decomposition of 1,2-Dichloroethane in an RF Plasma Environment,” Journal of Chemical Technology and Biotechnology, 78(7), 817-823 (2003).
61. Li, H.Q., Zou, J.J. and Liu, C.J., “Progress in Hydrogen Generation Using Plasmas,” Progress in Chemistry, 17(1), 69-77 (2005).
62. Li, W.Z., Yan, Y.J., Li, T.C., Ren, Z.W., Huang, M., Wang, J., Chen, M.Q. and Tan, Z.C., “Preparation of Hydrogen via Catalytic Gasification of Residues from Biomass Hydrolysis with a Novel High Strength Catalyst,” Energy & Fuels, 22(2), 1233-1238 (2008).
63. Liang, X.H. and Kozinski, J.A., “Numerical Modeling of Combustion and Pyrolysis of Cellulosic Biomass in Thermogravimetric Systems,” Fuel, 79(12), 1477-1486 (2000).
64. Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y. and Cen, K., “Research on Biomass Fast Pyrolysis for Liquid Fuel,” Biomass and Bioenergy, 26(5), 455-462 (2004).
65. Mahishi, M.R. and Goswami, D.Y., “An Experimental Study of Hydrogen Production by Gasification of Biomass in the Presence of a CO2 Sorbent,” International Journal of Hydrogen Energy, 32(14), 2803-2808 (2007).
66. Mckendry, P., “Energy Production from Biomass (Part 1): Overview of Biomass,” Bioresource Technology, 83(1), 37-46 (2002a).
67. Mckendry, P., “Energy Production from Biomass (Part 3): Gasification Technologies,” Bioresource Technology, 83(1), 55-63 (2002b).
68. Merida, W., Maness, P.C., Brown, R.C. and Levin, D.B., “Enhanced Hydrogen Production from Indirectly Heated, Gasified Biomass, and Removal of Carbon Gas Emissions Using a Novel Biological Gas Reformer,” International Journal of Hydrogen Energy, 29(3), 283-290 (2004).
69. Miao, X.L. and Wu, Q.Y., “High Yield Bio-oil Production from Fast Pyrolysis by Metabolic Controlling of Chlorella Protothecoides,” Journal of Biotechnology, 110(1), 85-93 (2004).
70. Miao, X.L., Wu, Q.Y. and Yang, C.Y. “Fast Pyrolysis of Microalgae to Produce Renewable Fuels,” Journal of Analytical and Applied Pyrolysis, 71(2), 855-863 (2004).
71. Mollah, M.Y.A., Schennach, R., Patscheider, J., Promreuk, S. and Cocke, D.L., “Plasma Chemistry as a Tool for Green Chemistry, Environmental Analysis and Waste Management,” Journal of Hazardous Materials, 79(3), 301-320 (2000).
72. Morris, K.W., “Fast Pyrolysis of Bagasse to Produce Bio-Oil Fuel for Power Generation,” International Sugar Journal, 103(1230), 259-263 (2001).
73. Muradou, M.F., Kersten, S.R.A. and Veringa, H.J., “Pure Hydrogen from Pyrolysis Oil Using the Steam-iron Process,” Catalyst Today, 127(1-4), 278-290 (2008).
74. Neoh, K.G. and Gannon, R.E., “Coal Violate Yield and Element Partition in Rapid Pyrolysis,” Fuel, 63(10), 1347-1352 (1984).
75. Nishikawa, H., Ibe, M., Tanaka, M., Ushio, M., Takemoto, T., Tanaka, K., Tanahashi, N. and Ito, T., “A Treatment of Carbonaceous Wastes Using Thermal Plasma with Steam,” Vacuum, 73(3-4), 589-593 (2004).
76. Onay, O. and Kockar, O.M., “Fixed-bed Pyrolysis of Rapeseed (Brassica napus L.),” Biomass & Bioenergy, 26(3), 289-299 (2004).
77. Onay, Z., Beis, S.H. and Kockar, O.M., “Pyrolysis of Walnut Shell in a Well-swept Fixed-bed Reactor,” Energy Sources, 26(8), 771-782 (2004).
78. Pendyal, B., Johns, M.M., Marshall, W.E., Ahmedna M. and Rao, R.M., “The Effect of Binders and Agricultural By-products on Physical and Chemical Properties of Granular Activated Carbons,” Bioresource Technology, 68(3), 247-254 (1999).
79. Pian, C.C.P., Gannon, R.E., Norton, O.P., Okhuysen, W. and Cook, R.L., “Advanced Gasifier Design for Law Rank Coals and Waste-derived Fuels,” Proceeding of the 2nd International High Temperature Air Combustion Symposium, Energy & Resource Laboratories, Hsinchu, Taiwan, E5.1-E5.12 (1999).
80. Prins, M.J., Ptasinski, K.J. and Janssen, F.J.J.G, “More Efficient Biomass Gasification via Torrefaction,” Energy, 31(15), 3458-3470 (2006).
81. Pütün, A.E., Apaydm, E. and Pütün, E., “Rice Straw as a Bio-oil Source via Pyrolysis and Steam Pyrolysis” Energy, 29(12-15), 2171-2180 (2004).
82. Ramachandran, K. and Kikukawa, N., “Thermal Plasma In-flight Treatment of Electroplating Sludge,” IEEE Transactions on Plasma Science, 30(1), 310-317 (2002).
83. Rapagna, S., Provendier, H., Petit, C., Kiennemann, A. and Foscolo, P.U., “Development of Catalysts Suitable for Hydrogen or Syn-gas Production from Biomass Gasification,” Biomass and Bioenergy, 22(5), 377-388 (2002).
84. Saha, M., “Ionization in the Solar Chromospheres,” Philosophical Magazine, 40, p.472 (1920).
85. Schröder, E., Thomauske, K., Weber, C., Hornung, A. and Tumiatti, V., “Experiments on the Generation of Activated Carbon from Biomass,” Journal of analytical and applied pyrolysis, 79(1-2), 106-111 (2007).
86. Seinfeld, J.H., “Air Pollution: a Half Century of Progress,” AIChE Journal, 50, 1096-1108 (2004).
87. Sharma, R.K. and Bakhshi, N.N., “Catalytic Upgrading of Biomass-derived Oils to Transportation Fuels and Chemicals,” The Canadian Journal of Chemical Engineering, 69(5), 1071-1081 (1991).
88. Shie, J.L., Chang, C.Y., Lin, J.P., Wu, C.H. and Lee, D.J., “Resources Recovery of Oil Sludge by Pyrolysis: Kinetics Study,” Journal of Chemical Technology and Biotechnology, 75(6), 443-450 (2000).
89. Shie, J.L., Chang, C.Y., Lin, J.P., Lee, D.J. and Wu, C.H., “Thermal Degradation Kinetics of Oil Sludge in the Presence of Carbon Dioxide,” Journal of the Chinese Institute of Environmental Engineering, 11(4), 307-316 (2001).
90. Shie, J.L., Chen, Y.H., Chang, C.Y., Lin, J.P., Lee, D.J. and Wu, C.H., “Thermal Pyrolysis of Poly(vinyl alcohol) and Its Major Products,” Energy & Fuels, 16(1), 109-118 (2002a).
91. Shie, J.L., Chang, C.Y., Lin, J.P., Lee, D.J. and Wu, C.H., “Effect of Feeding Oxygen Fraction on Gas Emission and Solid Residue from Oxidative Thermal Treatment of Oily Sludge,” Journal of the Chinese Institute of Environmental Engineering, 12(1), 65-76 (2002b).
92. Shie, J.L., Lin, J.P., Chang, C.Y., Lee, D.J. and Wu, C.H., “Use of Calcium Compounds as Additives for Oil Sludge Pyrolysis,” Journal of the Chinese Institute of Environmental Engineering, 12(4), 363-371 (2002c).
93. Shie, J.L., Lin, J.P., Chang, C.Y., Wu, C.H., Lee, D.J., Chang, C.F. and Chen, Y.H., “Oxidative Thermal Treatment of Oil Sludge at Low Heating Rates,” Energy & Fuels, 18(5), 1272-1281 (2004).
94. Shih, S.I., Lin, T.C. and Shih, M.L., “Decomposition of Benzene in the RF Plasma Environment - Part I. Formation of Gaseous Products and Carbon Depositions,” Journal of Hazardous Materials, 116(3), 239-248 (2004).
95. Singh, D., Hernandez-Pacheco, E., Hutton, P.N., Patel, N. and Mann, M.D., “Carbon Deposition in an SOFC Fueled by Tar-laden Biomass Gas: a Thermodynamic Analysis,” Journal of Power Sources, 142(1-2), 194-199 (2005).
96. Sohma, M., Yamaguchi, I., Tsukada, K., Kondo, W., Kamiya, K., Mizuta, S., Manabe, T. and Kumagai, T., “Preparation of CeO2-buffer Layers for Large-area MOD-YBCO Films (10 × 30 cm2) with High-Jc,” IEEE Transactions on Applied Superconductivity, 15(2), 2699-2702 (2005).
97. Sonobe, T. and Worasuwannarak, N., “Kinetic Analyses of Biomass Pyrolysis Using the Distributed Activation Energy Model,” Fuel, 87(3), 414-421 (2008).
98. Srinivasa Reddy, M., Basha, S., Joshi, H.V., Sravan Kumar, V.G., Jha, B., and Ghosh, P.K., “Modeling the Energy Content of Combustible Ship-scrapping Waste at Alang-Sosiya, India, Using Multiple Regression Analysis,” Waste Management, 25(7), 747-754 (2005).
99. Stong, C.L., “The Amateur Scientist,” Scientific American, November, 173-178 (1961).
100. Tang, L. and Huang, H., “An Investigation of Sulfur Distribution during Thermal Plasma Pyrolysis of Used Tires,” Journal of Analytical and Applied Pyrolysis, 72(1), 35-40 (2004).
101. Tang, L. and Huang, H., “Plasma Pyrolysis of Biomass for Production of Syngas and Carbon Adsorbent,” Energy & Fuels, 19(3), 1174-1178 (2005a).
102. Tang, L. and Huang, H., “Biomass Gasification Using Capacitively Couple RF Plasma Technology,” Fuel, 84(16), 2055-2063 (2005b).
103. Tendler, M., Rutberg, P. and van Oost, G., “Plasma Based Waste Treatment and Energy Production,” Plasma Physics and Controlled Fusion, 47(5A), A219-A230 (2005).
104. Tomishige, K., Asadullah, M. and Kunimori, K., “Syngas Production by Biomass Gasification Using Rh/CeO2/SiO2 Catalysts and Fluidized Bed Reactor,” Catalysis Today, 89(4), 389-403 (2004).
105. Tsai W.T., Chang, C.Y., Wang, S.Y., Chang, C.F., Chien, S.F. and Sun, H.F., “Preparation of Activated Carbons from Corn Cob Catalyzed by Potassium Salts and Subsequent Gasification with CO2,” Bioresource Technology, 78(2), 203-208 (2001).
106. Tsai, C.H. and Hsieh, T.H., “New Approach for Methane Conversion Using an RF Discharge reactor. 1. Influences of Operating Conditions on Syngas Production,” Industrial & Engineering Chemistry Research, 43(15), 4043-4047 (2004).
107. Tsai, C.H., Lee, W.J., Shih, M.L., Chen, C.Y. and Tsai, P.J., “Conversion of SO2 into Elemental Sulfur by Using the RF Plasma Technique,” AICHE Journal, 50(2), 524-529 (2004).
108. Tsai W.T., Lee, M.K. and Chang, Y.M., “Fast Pyrolysis of Rice Straw, Sugarcane Bagasse and Cocount Shell in an Induction-heating Reactoor,” Journal of analytical and applied pyrolysis, 76(1-2), 230-237 (2006).
109. Waldner, M.H. and Vogel, F., “Renewable Production of Methane from Woody Biomass by Catalytic Hydrothermal Gasification,” Industrial & Engineering Chemistry Research, 44(13), 4543-4551 (2005).
110. Watanabe, T. and Shimbara, S., “Halogenated Hydrocarbon Decomposition by Steam Thermal Plasmas,” High Temperature Material Processes, 7(4), 455-474 (2003).
111. Wei, J.M., Xu, B.Q., Li, J.L., Cheng, Z.X. and Zhu, Q.M., “Highly Active and Stable Ni/ZrO2 Catalyst for Syngas Production by CO2 Reforming of Methane,” Applied Catalysis A: General, 196(2), 167-172 (2000).
112. Wei, X., Schnell, U. and Hein, K.R.G., “Behaviour of Gaseous Chlorine and Alkali Metals during Biomass Thermal Utilization,” Fuel, 84(7-8), 841-848 (2005).
113. White, G.A., Stickler, D.B., von Rosenberg, C.W. and Gannon, R.E., “The Avco Gasifer in a Combined Cycle Power Plant,” Proceeding of the Advanced Coal Technology Conference, Denver, Colorado (1981).
114. Worasuwannarak, N., Sonobe, T. and Tanthapanichakoon, W., “Pyrolysis Behaviors of Rice Straw, Rice Husk, and Corncob by TG-MS Technique,” Journal of analytical and applied pyrolysis, 78(2), 265-271 (2007).
115. Wu, C.H., Chang, C.Y., Tseng, C.H. and Lin, J.P., “Pyrolysis Product Distribution of Waste Toilet Paper in a Laboratory-scale TGA Reactor,” Journal of the Chinese Institute of Environmental Engineering, 13(1), 67-76 (2003).
116. Yaman, S., “Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks,” Energy Conversion and Management, 45(5), 651-671 (2004).
117. Yan, R., Yang, H.P., Chin, T., Liang, D.T., Chen, H.P. and Zheng, C.G., “Influence of Temperature on the Distribution of Gaseous Products from Pyrolyzing Palm Oil Wastes,” Combustion and Flame, 142(1-2), 24-32 (2005).
118. Yang, R., Zhang, Y., Iwama, Y. and Tsubaki, N., “Mechanistic of a New Low-temperature Methanol Synthesis on Cu/MgO Catalysts,” Applied Catalysis A: General, 288(1-2), 126-133 (2005).
119. Yang, C., Ma, Z., Zhao, N., Wei, W., Hu, T. and Sun, Y., “Methanol Synthesis from CO2-rich Syngas Over a ZrO2 Doped CuZnO Catalyst,” Catalysis Today, 115(1-4), 222-227 (2006).
120. Zhang, G., Kataphinan, W., Teye-Mensah, R., Katta, P., Khatri, L., Evans, E.A., Chase, G.G., Ramsier, R.D. and Reneker, D.H., “Electrospun Nanofibers for Potential Space-based Applications,” Materials Science and Engineering B-Solid State Materials for Advanced Technology, 116(3), 353-358 (2005).
121. Zhao, Z.L., Huang, H.T., Wu, C.Z., Li, H.B. and Chen, Y., “Biomass Pyrolysis in an Argon/hydrogen Plasma Reactor,” Chemical Engineering & Technology, 24(11), 197-199 (2001).
122. Zhengping, H., Zhu, H.Y. and Lu, G.Q., “Zr-laponite Pillared Clay-based Nickel Catalysts for Methane Reforming with Carbon Dioxide,” Applied Catalysis A: General, 242(2), 275-286 (2003).
123. Zhou, H., Jensen, A.D., Glarborg, P., Jensen, P.A. and Kavaliauskas, A., “Numerical Modeling of Straw Combustion in a Fixed Bed,” Fuel, 84(4), 389-403 (2005).
124. Zhu, N., Deng, C., Xiong, Y. and Qian, H., “Performance Characteristics of Three Aeration Systems in the Swine Manure Composting,” Bioresource Technology, 95(3), 319-326 (2004).
125. Zhu, N., “Effect of Low Initial C/N Ratio on Aerobic Composting of Swine Manure with Rice Straw,” Bioresource Technology, 98(1), 9-13 (2007).
126. 工業技術研究院,「推動生質柴油及稻稈生質能處理策略分析及成本效益評估」,EPA-93-FA11-03-A171 (2005)。
127. 阿里 鮑蘭特 卡貝爾著,孟憲鈺譯,「電漿物理學」,徐式基金會出版部 (1969)。
128. 吳耿東和李宏台,「生質能源-化腐朽為能源」,工業技術研究院能源與資源研究所,專案報告 (2004)。
129. 張慶源、謝哲隆、張瓊芬、林正芳、官文惠、楊申語、蕭述三、周春禧、郭景宗、蔡健雄、蕭代基、洪鳴丰,行政院國家科學委員會補助專題研究計畫成果報告,「生質廢棄物資源及能源化先進技術開發與系統展示研究 (1/3)」,NSC 94-2218-E-002-070 (2006)。
130. 張慶源、謝哲隆、張瓊芬、林正芳、官文惠、楊申語、蕭述三、周春禧、郭景宗、蔡健雄、蕭代基、洪鳴丰,行政院國家科學委員會補助專題研究計畫成果報告,「生質廢棄物資源及能源化先進技術開發與系統展示研究 (2/3)」,NSC 95-2218-E-002-035 (2007)。
131. 張慶源、謝哲隆、張瓊芬、林正芳、官文惠、楊申語、蕭述三、周春禧、郭景宗、蔡健雄、蕭代基、洪鳴丰,行政院國家科學委員會補助專題研究計畫成果報告,「生質廢棄物資源及能源化先進技術開發與系統展示研究 (3/3)」,NSC 96-2218-E-002-004 (2008)。
132. 經濟院能源局,「能源經濟白皮書」,http://www.moeaboe.gov.tw/policy/EnergyWhitePaper/94/main/main.html (2004)。
133. 廖瑞可,碩士論文「生質物之熱處理資源化研究」,台大環工所 (2008)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41426-
dc.description.abstract現今全球的能源供需有八成以上仰賴化石燃料,其中石油就佔了三成以上。 但由於世界石油蘊藏量日益減少,且其燃燒後所排放之二氧化碳亦為造成地球溫室效應的主因之一。 也因此為了降低石油短缺所帶來之衝擊及減緩全球溫室效應,開發新的替代性及環保可再生能源將是21世紀人類的重要課題。 而合適的替代性能源,主要在其可提供無碳排放的能源及有大規模商業化的潛力,在眾多選擇中以生質能源在臺灣具有非常大的發展潛力。
生質物(Biomass)簡稱為生質,泛指由生物產生的有機物質。 而生質能(bioenergy)則是指將生質物利用各種轉換程序(氣化、熱解、直接燃燒、厭氣分解、及發酵等)進行能源轉換,並將轉換後之能源進行發電等其他用途。 生質物及有機廢棄物屬於生質能源之一部份,適當處理以回收能源及資源是趨近零廢棄全循環目標很重要的途徑。 稻米為臺灣地區之最大糧食來源,也因此每年會產生近140萬噸的稻桿廢棄物。 而其傳統處理方式為直接戶外露天燃燒和現地掩埋兩種,但這兩種方式均會對環境造成負擔。
傳統熱轉換程序受限於加熱方式而有加熱速率及質傳效率上的限制,因此本論文利用高週波電漿之高加熱速率及能產生高能量物種之特性來克服傳統熱轉換程序中常見的氣體產物量偏低且產物中常有焦油污染之缺點。 此外文獻中指出在生質物熱轉換過程中搭配合適的觸媒能促進生質物之轉換效率、減少焦油之生成及提升目標氣體(如氫氣和甲烷)之產量。
因此本論文研究重點即為以高週波電漿為新一代加熱源來建立高週波電漿熱裂解設備,並搭配K2CO3觸媒來提升稻稈之熱轉換效率及NiO/CaO-Al2O3觸媒及Fe2O3-Cr2O3觸媒來增加產氣中氫氣與甲烷之產量,以將稻稈生質廢棄物轉換為可使用之能源及資源。 本研究除了得到高週波電漿處理稻稈之最佳操作條件、不同供給電壓時之高週波電漿熱裂解動力模式、高週波電漿設備能量平衡等結果外。 最後更依據所得到之實驗結果來發展與一套高週波電漿多階段熱裂解稻稈流程以供作為未來實際應用與商業用設計之參考。
zh_TW
dc.description.abstractBioenergy from biomass has a potential to provide a significant portion of the projected renewable energy provisions for the shortage of the oil. Among the available biomass wasrtes, rice straw is one of the favorable bioenergy sources, because it is the residue from the end use of the biomass products. The reutilization of rice straw not only saves the cost of disposal but also produces valuable bioenergy, achieving the goal of resources recovery and reuse. In Taiwan, rice is one of the principal foods and the total annual generation of rice straw is about 1.4 million tons.
Transform of the biomass wastes into bioenergy can be efficiently achieved applying thermochemical methods such as pyrolysis and gasification. Two main disadvantages of the pyrolysis and gasification of biomass wastes for producing gases of medium calorific value via the traditional thermolysis technology are (1) the low gas yield, reducing the total energy value of gas and (2) the high content of tar in gas, causing the corroding problem of the gas collection equipment and increasing the need for the further treatment of the gas produced.
Application of a novel heating method via the radio frequency (RF) plasma is one of the feasible choices for overcoming the disadvantages of thermolysis using traditional heating methods. The heating method using RF has many advantages such as high heating rate, short heating time to reach setting temperature, low heat loss and low residual tar. Hence, this novel method can overcome the problems encountered in the traditional pyrolysis of biomass. Low tar content in product obtained from RF plasma thermolysis also can be achieved because high energy species, such as electron, ion, atom and free radical, produced from RF plasma can enhance the decomposition of tar.
According to the references, adding the suitable catalysts in the pyrolysis of biomass is helpful for improving the thermolysis of biomass, enhancing the decomposition of tar and modifying the gas products.
In this study, the RF plasma thermolysis reactor was used for pyrolyzing the biomass waste of rice straw. The application of RF plasma combined with various catalysts of K2CO3, NiO/CaO-Al2O3 and Fe2O3-Cr2O3 was studied. The results indicate that the uses of the said three catalysts can improve the conversion of pyrolysis, yield of H2 and yield of CH4, respectively. The effects of some major system parameters on the performance of the pyrolysis of rice straw via RF plasma were studied and elucidated. The kinetic model employed to describe the pyrolytic conversion of rice straw at various loading powers agrees well with the experimental data. In addition, a multi-stage RF plasma treatment process for rice straw pyrolysis was presented and discussed.
The data and information obtained are useful for the rational design and operation of pyrolysis of rice straw via RF plasma.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:18:53Z (GMT). No. of bitstreams: 1
ntu-98-F92541111-1.pdf: 1717781 bytes, checksum: c624c3c98ac0c21d96f660689bf3a8f9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
中文圖目錄 x
英文圖目錄 xiii
中文表目錄 xviii
英文表目錄 xx
符號及英文簡寫說明 xxii
英中對照 xxv
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 4
第二章 文獻回顧 7
2-1 生質能源相關研究 7
2-1-1 生質物之介紹 7
2-1-2 生質能之介紹 8
2-1-3 生質物資源化及能源化之相關研究 9
2-2 稻稈相關研究 9
2-2-1 國內稻稈產量 9
2-2-2 國內稻稈處理方式 10
2-2-3 國內外稻稈實際應用之介紹 11
2-3 傳統熱處理相關研究 11
2-3-1 傳統熱處理技術 11
2-3-2 傳統熱處理技術應用於生質物之處理 12
2-3-3 傳統熱處理技術應用於稻稈之處理 16
2-4 電漿熱處理相關研究 16
2-4-1 電漿(Plasma)簡介 16
2-4-2 電漿種類及其原理 18
2-4-3 電漿應用 19
2-4-4 高週波(Radio-frequency, RF)電漿熱處理生質物之介紹 20
2-5 觸媒相關研究 21
2-5-1 觸媒原理 21
2-5-2 常見觸媒種類及其於環工上之應用 24
2-5-3 觸媒結合傳統熱處理生質物之研究 24
2-5-4 觸媒結合傳統熱處理稻稈之研究 27
第三章 研究及實驗方法 29
3-1 實驗藥品及原料 29
3-1-1 實驗樣品 29
3-1-2 實驗氣體 29
3-1-3 實驗藥品及觸媒 29
3-1-4 分析用標準品 31
3-2 實驗設備 31
3-2-1 傳統熱處理反應實驗系統設備-大型熱重分析系統 (L-TGA) 32
3-2-2 高週波電漿熱處理反應系統設備 36
3-3 實驗步驟 45
3-3-1 樣品前處理步驟 45
3-3-2 傳統熱處理稻稈之特性分析 46
3-3-3 高週波電漿熱處理-與傳統熱處理之特性比較 48
3-3-4 高週波電漿熱處理稻稈實驗 50
3-3-5 高週波電漿結合觸媒熱處理稻稈實驗 52
3-4 實驗分析方法與儀器 56
3-4-1 固態樣品分析 56
3-4-2 氣態樣品分析 61
第四章 結果與討論 67
4-1 稻稈特性分析 67
4-1-1 三成分、元素、熱值和BET比表面積分析 67
4-1-2 金屬含量分析 69
4-1-3 熱重分析 71
4-2 高週波電漿熱處理反應系統特性 73
4-2-1 實驗樣品質量的決定 73
4-2-2 工作氣體流量與系統壓力評估 73
4-2-3 系統加熱溫率評估 75
4-2-4 反應管溫度梯度 81
4-3 傳統熱處理與高週波電漿熱處理之比較 84
4-3-1 質量消失速率與消失趨勢之比較 85
4-3-2 產物分佈之比較 89
4-3-3 能量消耗之比較 91
4-4 高週波電漿熱處理稻稈分析 92
4-4-1 高週波電漿熱處理稻稈之質量消失速率與消失趨勢 92
4-4-2 產物分佈 95
4-4-3 固體產物分析 97
4-4-4 氣體產物分析 99
4-4-5 質量平衡 106
4-4-6 動力模式分析 110
4-4-7 能量平衡 115
4-5 高週波電漿結合觸媒熱處理稻稈分析 120
4-5-1 觸媒促進稻稈裂解效率 120
4-5-2 觸媒進行產氣改質化 128
4-5-3 能量效益 132
4-6 高週波電漿多階段處理流程分析 134
4-6-1 高週波電漿多階段處理流程之建立 134
4-6-2 高週波電漿多階段處理流程之能量分析 136
第五章 結論與建議 140
5-1 結論 140
5-1-1 稻稈特性分析 140
5-1-2 高週波電漿熱處理反應系統特性 140
5-1-3 傳統熱處理與高週波電漿熱處理之比較 141
5-1-4 高週波電漿熱處理稻稈分析 142
5-1-5 高週波電漿結合觸媒熱處理稻稈分析 143
5-1-6 高週波電漿多階段處理流程分析 143
5-2 建議 144
參考文獻 146
附錄A 高週波電漿熱裂解稻稈技術之模廠化工程經濟計算結果 157
附錄B 本整合型計畫之個別子計畫成果簡述 164
附錄C 作者相關著作 170
dc.language.isozh-TW
dc.title以高週波電漿及觸媒催化程序熱處理稻稈生質廢棄物之研究zh_TW
dc.titleThermal Treatment of Biomass Waste of Rice Straw via the Combined Radio-frequency Plasma and Catalytic Processen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee馬鴻文,楊申語,蕭述三,張奉文,林財富
dc.subject.keyword生質廢棄物,生質能源,高週波,電漿,稻稈,熱裂解,zh_TW
dc.subject.keywordBiomass waste,Bioenergy,Radio frequency,Plasma,Rice straw,Pyrolysis,en
dc.relation.page170
dc.rights.note有償授權
dc.date.accepted2009-02-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved