請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李達源 | |
| dc.contributor.author | Chiou-Pin Chen | en |
| dc.contributor.author | 陳秋萍 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:18:34Z | - |
| dc.date.available | 2010-03-23 | |
| dc.date.copyright | 2009-03-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-03-16 | |
| dc.identifier.citation | 行政院環保署環檢所。1991。土壤中鎘、鉻、銅、鎳、鉛及鋅檢測方法-0.1M 鹽
酸部份萃取火焰式原子吸收光譜法 (NIEA S320.60T)。 行政院環保署環境檢驗所。2003。土壤中重金屬檢驗方法-王水消化法 (NIEA S321.63B)。 李志甫。1995。X 光吸收光譜術在觸媒特性分析上的應用。化學 53:280-293。 邱銖寬。1990。四種作物對鎘處理的反應。國立台灣大學農業化學研究所碩士論 文。 胡蓉、吳自玉、劉靜、謝亞寧、胡天斗、張靜、豐傳悅、柴之芳。2004。用XANES 實驗方法研究Cr 的價態。高能物理與核物理 28:100-103。 洪崑煌。1996。土壤化學。國立編譯館。P. 167-171。 施幼娜。2004。以選擇性離子交換樹脂抽出法評估添加堆肥處理降低污染土壤有 效性六價鉻含量及植物毒性之效果。國立台灣大學農業化學研究所碩士論文。 陳英旭、何增耀、吳健平。1993。土壤中鉻的形態及其轉化。環境科學 15:53-56。 陳英旭、駱永明、朱永官、朱祖祥、何增耀。1994。土壤中鉻的化學行為研究 V. 土 壤對 Cr(III) 吸附和沉澱作用的影響因素。土壤學報 31:77-85。 國立台灣大學農業化學系編。2005。國立台灣大學土壤學實驗講義。 彭明生、李恩迪、林冰、梁金龍。1999。同步輻射X 射線吸收譜及其在礦物學、 地球化學中的應用。礦物岩石地球化學通報 18:33-37。 鄒裕民、陳益榮、王明光。1997。鉻酸鹽在土壤中的吸持(一)。中國農業化學會 誌 35: 641-651。 鄒裕民、陳益榮、王明光。1998。鉻酸鹽在土壤中的吸持(二)。中國農業化學會 誌 36: 77-90。 楊宗燁、林鴻明、吳泉毅、林中魁。2001。奈米材料之X 光吸收光譜檢測與分析。 物理雙月刊 23: 640-646。 廖自基。1992。微量元素的環境化學及生物效應。中國環境科學出版社。p. 269-287。 Abreu, M. M., F. Calouro, and M. L. Fernandes. 2002. Application of chromium to soil at different rates and oxidation states. II. Influence on uptake of selected nutrients by radish. Commun. Soil Sci. Plant Anal. 33:2269-2277. Adriano, D. C. 1986. Trace element in the terrestrial environment. Springer-Verlag, New York. Adriano, D. C. 2001. Trace element in terrestrial environments. 2nd ed. Springer-Verlag, New York. Ajmal, A., A. A. Nomani, and A. Ahmad. 1984. Acute toxicity of chromate electroplating wastes to microorganisms: Adsorption of chromate and chromium (VI) on mixture of clay and sand. Water Air Soil Pollut. 23:119-127. Amer, F., D. R. Bouldin, C.A. Black, and F. R. Duke. 1955. Chacterization of soil phosphorus by anion exchange resin adsorption and P-32 equilibration. Plant Soil 6:39-408. Anderson, A. J., D. R. Meyer, and F. K. Mayer. 1973. Heavy metal toxicities: levels of nick, cobalt, and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust. J. Agric. Res. 24:557-571. Anderson, L. A., D. K. Kent, and J. M. Davis. 1994. Batch experiments characterizing the reduction of Cr (VI) using suboxic material from a mildly reducing sand and gravel aquifer. Environ. Sci. Technol. 28:178-185. Barcelo J., C. Poschenrieder, and B. Gunse. 1985. Effect of chromium (VI) on mineral element composition of bush beans. J. Plant Nutr. 8:211-217. Barnhart, J. 1997a. Occurrences, uses, and properties of chromium. Regul. Toxicol. Pharm. 26:S3-S7. Barnhart, J. 1997b. Chromium chemistry and implications for environmental fate and toxicity. J. Soil Contam. 6:561-568. Bartlett, R. J., and J. M. Kimble. 1976a. Behavior of chromium in soils : I. Trivalent forms. J. Environ. Qual. 5:379-382. Bartlett, R. J., and J. M. Kimble. 1976b. Behavior of chromium in soils : II. Hexavalent forms. J. Environ. Qual. 5:382-386. Bartlett, R., and B. R. James. 1979. Behavior of chromium in soils : III. Oxidation. J. Environ. Qual. 8:31-35. Bartlett, R. J., and B. R. James. 1996. Chromium. p. 683-701. In D. L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America book series number 5. ASA, Madison, WI. Barrow, N. J. 1985. Reactions of anions and cation with variable-charge soils. Adv. Agron. 38:183-230. Bloomfield, C., and G. Pruden. 1980. The behavior of Cr(VI) in soil under aerobic and anaerobic conditions. Environ. Pollut. 23:103-114. Bolan, N. S., and V. P. Duraisamy. 2003. Role of inorganic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41:533-555. Bolan, N. S., and S. Thiagarajan. 2001. Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Aust. J. Soil Res. 39:1091-1103. Bolan, N. S., D. C. Adriano, R. Natesan, and B. J. Koo. 2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32:120-128. Eary, L. E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22:972-977. Eary, L. E., and D. Rai. 1991. Chromate reduction by subsurface soils under acidic conditions. Soil Sci. Soc. Am. J. 55:676-683. Fendorf, S. E., G. M. Lamble, M. G. Stapleton, M. J. Kelley, and D. L. Sparks. 1994. Mechanisms of chromium (III) sorption on silica. 1. Cr(III) surface structure derived by x-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 28:284-289. Fendorf, S. E. 1994. Mechanism of chromium(III) sorption on silica. 2. effect of reaction conditions. Environ. Sci. Technol. 28:290-297. Fendorf, S. E. 1995. Surface reaction of chromium in soil and waters. Geoderma 67:55-71. Fendorf, S. E., and D. L. Sparks. 1996. X-ray absorption fine structure spectroscopy. p. 377-415. In D. L. Sparks (ed.) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America book series number 5. ASA, Madison, WI. Fernandes, M. L. V., F. Calouro, and M. M. Abreu. 2002. Application of chromium to soils at different rates and oxidation states. I. Effect on dry mater yield and chromium uptake by radish. Commun. Soil Sci. Plant Anal. 33:2259-2268. Figura, P., and B. McDuffie. 1977. Characterization of the calcium form of chelex 100 for trace mental studies. Anal. Chem. 49:1950-1953. Figura, P., and B. McDuffie. 1979. Use of chelex resin for determination of labile trace metal fractions in aqueous ligand media and comparison of the method with anodic stripping voltammetry. Anal. Chem. 51:120-125. Figura, P., and B. McDuffie. 1980. Determination of labilities of soluble trace metal species in aqueous environmental sample by anodic stripping voltammetry and chelex column and catch methods. Anal. Chem. 52:1433-1439. Griffin, R. A., A. K. Au, and R. R. Frost. 1977. Effect of pH on adsorption of chromium from landfill-leachate by clay minerals. J. Environ. Sci. Health. A 12:431-449. Gode, F., and E. Pehlivan. 2003. A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J. Hazard. Mater. B 100:231-243. Han, F. X., B. B. M. Sridhar, D. L. Monts, and Y. Su. 2004. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol. 162:489-499. Hasnain, S., and A. N. Sabri. 1997. Growth stimulation of triticum aestivum seedlings under Cr-stresses by non-rhizospheric pseudomonad strains. Environ. Pollut. 97:265-273. Hewitt, E. J. 1953. Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and marrowstem kale grown in sand culture. J. Exp. Bot. 4:59-64. James, B. R., and R. J. Bartlett. 1983a. Behavior of chromium in soils: V. Fate of organically complexed Cr (III) added to soil. J. Environ. Qual. 12:169-172. James, B. R., and R. J. Bartlett. 1983b. Behavior of chromium in soils: VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual. 12: 173-176. James, B. R., and R. J. Bartlett. 1984. Plant-soil interactions of chromium. J. Environ. Qual. 13:67-70. James, B. R. 1996. The challenge of remediating chromium-contaminated soil. Environ. Sci. Technol. 30:248A-251A. Jardine, P. M., S. E. Fendorf, M. A. Mayes, I. L. Larsen, S. C. Brooks, and W. B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol. 33:2939-1944. Jing, J., and T. J. Logan. 1991. Chelating resin method for estimation of sludge cadmium bioavailability. Commun. Soil Sci. Plant Anal. 22:2029-2035. Jones, Jr. J. B., and V. W. Case. 1990. Sampling, handling, and analyzing plant tissue samples. p. 389-427. In R. L. Westerman, (ed.) Soil testing and plant analysis. 3rd ed. SSSA. Madison, WI. Katz, S. A., and H. Salem. 1993. The toxicology of chromium with respect to its chemical speciation: A review. J. Appl. Toxicol. 13:217-224. Kerndorff, H., and M. Schnitzer. 1980. Sorption of metals on humic acid. Geochem. Cosmochim. Acta. 44:1701-1708. Kim, J. G., J. B. Dixon, C. C. Chusuei, and Y. Deng. 2002. Oxidation of chromium (III) to (VI) by manganese oxides. Soil Sci. Soc. Am. J. 66:306-315. Kotaś, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107:263-283. Krejpcio, Z. 2001. Essentiality of chrmium for human nutrition and health. J. Environ. Stud. 10:399-404. Lee, D. Y., and H. C. Zheng. 1993. Chelating resin membrane method for estimation of soil cadmium phytoavailability. Commun. Soil Sci. Plant Anal. 24:685-700. Lee, D. Y., and H. C. Zheng. 1994. Simultaneous extraction of soil phytoavailable cadmium, copper, and lead by chelating resin membrane. Plant Soil 164:19-23. Lee, D. Y., P. H. Chiang, and K. H. Houng. 1996. Determination of bioavailable cadmium in paddy fields by chelating resin membrane embedded in soils. Plant Soil 181:233-239. Lee, D. Y., J. C. Huang, K. W. Juang, and L. Tsui. 2005. Assessment of phytotoxicity of chromium in flooded soils using embedded selective ion exchange resin method. Plant Soil 277:97-105. Lee, D. Y., Y. N. Shih, H. C. Zheng, C. P. Chen, K. W. Juang, J. F. Lee, and L. Tsui, 2006. Using selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil 281:87-96. Liu, D., W. Jiang, and M. Li. 1992. Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas. 117:23-29. Martello, L., P. Fuchsman, M. Sorensen, V. Magar, and R. J. Wenning. 2007. Chromium geochemistry and bioaccumulation in sediments from the Lower Hackensack River, New Jersey. Arch. Environ. Contam. Toxicol. 53:337-350. Martz, W. 1969. Chromium occurrence and function in biological systems. Physiol. Rev. 49:163-239. Mertz, W., E. E. Angino, H. L. Cannon, K. M. Hambidge, and A. W. Voors. 1974. Chromium. p. 29-35. In Geochemistry and the environment. Volume I. The relation of selected trace elements to health and disease. NAS. Washington, D. C. McGrath, S. P. 1982. The uptake and translocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol. 92:381-390. McKeague, J. A., J. E. Brydon, and N. M. Miles. 1971. Differentiation of form of extractable iron and aluminum in soil. Soil Sci. Soc. Am. Proc. 35:33-38. McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224. In A. L. Page et al. (ed.) Methods of soil analysis. Part. 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Mehra, O. P., and M. L. Jackson. 1960. Iron oxides removed from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner. 7:317-327. Naidu, R., N. S. Bolan, and R. S. Kookona. 1994. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45:419-429. National Research Council. 1974. Effects of chromium compounds on human health. p. 42-73. In Chromium. Nation Academy of Science. Washington, D. C. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic, and organic matter. p. 539-577. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Palmer, C. D., and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Persp. 92:25-40. Pendias, A. K., and H. Pendias. 1992. Trace elements in soils and plants. 2nd ed. CRC Press, Boca Raton, USA. Peterson, M. L., G. E. Brown, Jr., G. A. Parks, and C. L. Stein. 1997. Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results . Geochim. Cosmochim. Acta. 107:77-88. Rai, D., B. M. Sass, and D. A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26:345-349. Rai, D., L. E. Eary, and J. M. Zachara. 1989. Environmental chemistry of chromium. Sci. Total Environ. 86:15-23. Rengan, K. 1997. Chelating resins: sorption characteristics in chloride media. J. Radioanal. Nucl. Chem. 219:211-215. Rengaraj, S., K. H. Yeon, and S. H. Moon. 2001. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. B 87:273-287. Riggs, K. S., D. L. Rimmer, and J. K. Syerst. 1995. Effect of Liming on the chemical composition of soils. J. Sci. Food Agri. 69:159-167. Saleh, F. Y., T. F. Perkerton, R. V. Louis, J. H. Huang, and K. L. Dickson. 1989. Kinetics of chromium transformations in the environment. Sci. Total Environ. 86:25-41. Shaffer, R. E., J. O. Cross, S. L. Rose-Pehrsson, and W. T. Elam. 2001. Speciation of chromium in simulated soil samples using X-ray absorption spectroscopy and multivariate calibration. Anal. Chim. Acta. 442:295-304. Sharma, D. C., C. Chatterjee, and C. P. Sharma. 1995. Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204). Plant Sci. 111:145-151. Shewry, P. R., and P. J. Peterson. 1974. The uptake and transport of chromium by barley seedings (Hordeum vulgare L.). J. Experi. Bot. 25:785-797. Sigma. 2002. Sigma-Aldrich Co. USA. Skeffington, R. S., P. R. Shewry, and P. J. Peterson. 1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta. 132:209-214. Skogley, E. O., S. J. Georgitis, J. E. Yang, and B. E. Schaff. 1990. The phytoavailability soil test-pst. Commun. Soil Sci. Plant Anal. 21:1229-1243 Srivastava, S., R. Nigam, S. Prakash, and M. M. Srivastava. 1999. Mobilization of trivalent chromium in present of organic acids: a hydroponic study of wheat plant (Triticum vulgare). Bull. Environ. Contam. Toxicol. 63:524-530. Stearns, D. M., J. P. Wise, S. R. Patierno, and K. E. Wetterhahn. 1995a. Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J. 9:1643-1648. Stearns, D. M., J. J. Belbrnuo, and K. E. Wetterhahn. 1995b. A prediction of Chromium(III) accumulation in humans from chromium dietary supplements. FASEB J. 9:1650-1657. Stollenwerk, K. G., and D. B. Grove. 1985. Reduction of hexavalent chromium in water samples acidified for preservation. J. Environ. Qual. 14:396-399. Szulczewski, M. D., P. A. Helmke, and W. F. Bleam. 1997. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils. Environ. Sci. Technol. 31:2954-2959. Tokunaga, T. K., J. Wen, M. K. Firestone, T. C. Hazen, K. R. Olson, D. L. Herman, S. R. Sutton, and A. Lanzirotti. 2003. In situ reduction of chromium Cr(VI) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual. 32: 1641-1649. Turner, M. A., and R. H. Rust. 1971. Effects of chromium on growth and mineral nutrition of soybeans. Soil Sci. Soc. Am. Proc. 35:755-758. Tzou, Y. M., M. K. Wang, and R. H. Loeppert. 2003. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Arch. Environ. Contam. Toxicol. 44:445-453. Vazquez, M. D., C. Poschenrieder, and J. Barcelo. 1987. Chromium (VI) induced structural and ultrastructural changes in bush bean plants ( phseolus vulgaris L.). Ann. Bot. 59:427-438. Wallace, A., S. M. Soufi, J. W. Cha, and E. M. Romney. 1976. Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471-473. Wei, Y. L. S. Y. Chiu, H. N. Tsai, Y. W. Yang, and J. F. Lee. 2002. Thermal stabilization of chromium (VI) in kaolin. Environ. Sci. Technol. 36:4633-4641. Yamaguchi, T., and S. Aso. 1977. Chromium from the standpoint of plant nutrition. I. Effect of chromium concentraction on the germination and growth of several kinds of plants. J. Sci. Soil Manure Jpn. 48:466-470. Yang, J. E., E. O. Skogley, S. J. Georgitis, B. E. Schaff, and A. H. Ferguson. 1991. Phytoavailability soil test: development and verification of theory. Soil Sci. Soc. Am. J. 55:1358-1365. Yu, P. F., K. W. Juang, and D. Y. Lee. 2004. Assessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method. Plant Soil 258:333-340. Zachara, J. M., D. L. Glrvin, R. L. Schmidt, and T. Resch. 1987. Chromate adsorption on amorphous iron oxyhydroxide in the present of major groundwater ions. Environ. Sci. Technol. 21:589-594. Zachara, J. M., C. E. Cowan, R. L. Schmidt, and C. C. Ainsworth. 1988. Chromate adsorption by kaolinite. Clay Clay Miner. 36:317-326. Zachara, J. M., C. C. Ainsworth, C. E. Cowan, and C. T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53:418-428. Zhao, D., A. K. Sengupta, and L. Stewart. 1998. Selective removal of Cr (VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37:4383-4387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41412 | - |
| dc.description.abstract | 由於土壤中之 Cr(VI) 具強氧化性及高移動性,因此在評估鉻植物毒性時通常著重在Cr(VI),然酸性土壤中之 Cr(III) 植物毒性可能會因為其溶解度的增加而提高,因此 Cr(III) 之植物毒性不容忽視。另外,酸性土壤中之 Cr(VI) 易被存在土壤中的電子供應者如有機質還原成Cr(III),而 Cr(III) 之溶解度會隨著土壤 pH 值的下降而增加而導致其植物毒性的加劇,一旦酸性土壤遭受 Cr(VI) 污染,Cr(VI) 和 Cr(III) 皆可能導致植物毒害,故 Cr(VI) 污染土壤中不同鉻形態之植物毒性評估亦有其必要性。本研究擬以Chelex 100 樹脂評估鉻污染土壤中 Cr(III) 之有效性,並以小麥幼苗試驗對樹脂抽出結果進行驗證。另以 Chelex 100 及 Dowex M4195 兩種選擇性離子交換樹脂來評估添加 Cr(VI) 酸性土壤中 Cr(III) 及Cr(VI) 之有效性及土壤 pH 值對兩種鉻形態有效性之影響,並以X-射線近邊緣結構圖譜 (XANES) 鑑定添加 Cr(VI) 酸性土壤中 Cr(VI) 之還原程度以驗證樹脂抽出結果,並以小麥生長試驗觀察鉻之植物毒性。
在酸性土壤中,Chelex 100 樹脂之鉻抽出量會隨著Cr(III) 添加濃度之增加而增加,但在鹼性土壤中其鉻抽出量則低於儀器之偵測極限。酸性土壤中小麥之株高及乾重與樹脂抽出結果呈反比,且植物受害情形越嚴重則植體中之鉻濃度越高,而鹼性土壤中之小麥株高及乾重並未因為Cr(III) 之添加而受害。因此證實Chelex 100樹脂抽出方法可有效用來評估土壤中Cr(III) 植物毒性。 在添加不同濃度 Cr(VI) 之有機質含量較高之內埔系土壤中,Dowex M4195 樹脂之鉻抽出量皆低於儀器之偵測極限,且 Chelex 100 樹脂之鉻抽出量很低,經 XANES 圖譜證實,內埔系土壤中之Cr(VI) 已全部被還原成 Cr(III),且由小麥之生長並未受到影響,顯示內埔系土壤中由 Cr(VI) 還原而來的 Cr(III) 之有效性並不高。在添加不同濃度 Cr(VI) 且鐵鋁氧化物含量較高之平鎮系土壤中,Dowex M4195 及 Chelex 100 樹脂之鉻抽出量皆隨 Cr(VI) 添加濃度之增加而增加,但Chelex 100 樹脂之鉻抽出量亦比預期中低。由其 XANES 圖譜發現,加入平鎮系土壤之 Cr(VI) 僅部分被還原成 Cr(III),故小麥所受到之毒害可能同時由兩種形態鉻造成,但由於 Dowex M4195 樹脂之抽出量遠高於 Chelex 100 樹脂之抽出量,因此,造成植物毒害之鉻形態可能仍以 Cr(VI) 為主。建議在含較高有機質之 Cr(VI) 污染酸性土壤中,進入土壤之 Cr(VI) 及其還原後之 Cr(III) 對作物可能造成之影響很小,甚至不會對作物造成危害。但在較低有機質含量的酸性土壤中,進入土壤中之 Cr(VI) 及其還原後之 Cr(III) 皆可能對作物造成毒害,但還原後的 Cr(III) 因為土壤 pH 的升高而致使其溶解度降低,而降低其對作物之危害。 另外,在調整 pH 值並添加不同濃度 Cr(VI) 之供試土壤中,Chelex 100 樹脂之鉻抽出量隨著土壤 pH 值的增加而減少,添加不同濃度 Cr(VI) 之不同 pH 值內埔系土壤之 Dowex M4195 樹脂鉻抽出量皆低於儀器之偵測極限,而添加相同處理之不同 pH 值平鎮系土壤之 Dowex M4195 樹脂鉻抽出量則會隨著土壤 pH 值的增加而增加。內埔系土壤之 XANES 圖譜顯示,不同 pH 值土壤中所添加之 Cr(VI) 皆已被還原成Cr(III),而平鎮系土壤中之 Cr(VI) 之還原程度則隨著土壤 pH 值的增加而降低,且兩種供試土壤之小麥生長試驗結果與兩種樹脂抽出結果及 XANES 圖譜相符。故建議當土壤中的有機質含量相對較高時(土壤 pH 值介於4 - 6左右),Cr(VI) 之還原主要受土壤中有機質影響,土壤 pH 對Cr(VI) 還原影響並不大,即使土壤 pH 值已經調整至6.4,Cr(VI) 仍可被有機質還原成 Cr(III)(如內埔系土壤)。但若土壤之有機質含量較低,則Cr(VI) 還原程度主要仍受土壤 pH 之影響,其土壤 pH 值越高,則遭受 Cr(VI) 污染後其未還原之 Cr(VI) 含量越高,則其植物毒性亦越強(如平鎮系土壤)。 | zh_TW |
| dc.description.abstract | Cr(III) is less toxic than Cr(VI) and is considered to be a more stable chromium species in the environment. However, under an acidic environment, high levels of Cr(III) concentration in soil were also toxic to some plant species. The availability of soil Cr(VI) is usually used for assessing the phytotoxicity of Cr(VI)-contaminated soils. However, Cr(VI) is favorably reduced to Cr(III) under acid conditions and the availability of Cr(III) in acid soils could be high, thus the phytotoxicity resulting from Cr(III) should not be ignored. Therefore, evaluating the phytotoxicity of Cr(III) and determining the phytotoxicity of both Cr(VI) and Cr(III) in acid soils are essential for assessing the phytotoxicity of Cr.
A pot experiment of wheat seedlings was carried out and a chelating exchange resin, Chelex 100, was used to extract Cr(III) from the soils in order to examine the phytotoxicity of Cr(III)-spiked soils. Both acid and alkaline soils were selected in this part of the study, and the soils were spiked with seven levels of Cr(III) (0, 150, 300, 350, 400, 450, 500 mg kg-1soil) for preparing Cr(III)-contaminated soils. Besides, two selective exchange resins, Chelex 100 and DOWEX M4195, were used to extract soil available Cr(III) and Cr(VI) respectively and the X-ray absorption near edge structure spectroscopy (XANES) was used to determine the extent of Cr(VI) reduction to Cr(III). Two acid soils from agricultural areas Pinchen and Neipu were used, the soil pH levels were adjusted to approximately 4, 5, and 6 with addition of CaCO3. The soils were then spiked with six levels of Cr(III) or Cr(VI) (0, 150, 300, 500, 1000, and 1500 mg kg-1soil). A wheat seedling growth experiment was used to assess the phytotoxicity of soil Cr. In the pot experiment, the plant height and the dry weight of the wheat seedlings were adversely affected by the Cr(III)-spiked acidic soils, whereas growth inhibition of wheat seedlings was not found in alkaline soils with the same amounts of Cr(III) added. The amount of soil resin extractable Cr(III) increased with the increase of Cr(III) in the Cr(III)-spiked acidic soils. However, there was no detectable Cr(III) (≤ 0.05 mg kg-1) extracted from the alkaline soils. In addition, the reduction of plant height and dry weight of wheat seedlings, and the increase of plant Cr concentration and Cr uptake showed a pronounced correlation to the amount of soil resin-extractable Cr(III) byChelex 100 resin. The correlation between the relative plant height of the wheat seedlings and the amount of soil resin-extractable Cr(III) in a logarithmic scale was well fitted to an exponential type of dose-response relation model (r2 = 0.97). Therefore, the resin extraction method using Chelex 100 could be a reliable method for assessing the phytotoxicity of Cr(III) in Cr-contaminated soils. The results showed that in Cr(VI)-spiked Neipu soil, both of resin-extractable Cr(III) and Cr(VI) were not detectable and no growth inhibition of wheat seedlings were found. The XANES spectra showed that Cr(VI) added into Neipu soil was almost reduced to Cr(III). It indicates that the availability of Cr(III) formed from the reduction of spiking Cr(VI) in the Neipu soils, which contained higher amounts of organic matter, was low and thus no phytotoxicity effect was observed. On the contrary, in the Cr(VI)-spiked Pinchen soils, only a portion of added Cr(VI) was reduced to Cr(III). The amounts of resin-extractable Cr(III) and Cr(VI) increased with the levels of spiking Cr(VI). The decrease of dry weight and plant height of wheat seedlings was found while the Cr(VI) addition was above 500 mg kg-1soil. The inhibition of growth of wheat seedlings was thought to be related to the increase of amounts of both soil resin-extractable Cr(VI) and Cr(III). Furthermore, the large amount of DOWEX M4195 resin extractable Cr increased with increasing soil pH in Pinchen soil, but the DOWEX M4195 resin extractable Cr was not detected even Neipu soil pH was 6.4., and these results were conformed to the XANES spectra. The results suggest that in acid soils such as Pinchen, which did not have higher amounts of organic matter, the large amounts of both soil available Cr(III) and Cr(VI) resulting from high level of Cr(VI) contamination might be phytotoxic to plant growth. However, in high organic matter content soil such as Neipu soil, even the soil pH is high, Cr(VI) in soil still can be reduced by soil organic matter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:18:34Z (GMT). No. of bitstreams: 1 ntu-98-D91623401-1.pdf: 3193475 bytes, checksum: ffb942feb6bd8233baad17a25d392bd4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要..................................................................................................................................I
Abstract......................................................................................................................... III 目錄................................................................................................................................V 圖目錄..........................................................................................................................VIII 表目錄.........................................................................................................................XII 第一章、 緒言.................................................................................................................1 一、環境中的鉻.......................................................................................................1 二、鉻的危害............................................................................................................3 三、Cr(III) 與 Cr(VI) 物種.....................................................................................5 四、土壤中鉻之移動與分佈.....................................................................................7 五、土壤中鉻之植物毒性.......................................................................................11 六、Cr(VI) 污染土壤中 Cr(VI) 和 Cr(III) 植物毒性之評估...........................16 七、以 XANES (X-Ray Absorption Near Edge Structure) 鑑定 Cr(VI) 污染酸 性土壤中 Cr(VI) 之還原程度......................................................................20 八、研究目的...........................................................................................................24 第二章、材料與方法....................................................................................................25 第一節 以Chelex 100 樹脂抽出法評估土壤中Cr(III) 之植物毒性.....................25 一、鈣飽和 Chelex 100 樹脂之製備...................................................................25 二、Chelex 100 樹脂吸附溶液中之 Cr(III) 所需之平衡時間..........................27 三、Chelex 100 樹脂對不同濃度 Cr(III) 溶液之吸附及已吸附 Cr(III) 之Chelex 100 樹脂之 Cr(III) 脫附劑濃度試驗..........................................28 四、以Chelex 100 樹脂抽出Cr(III) 污染土壤之鉻...........................................29 五、Cr(III) 污染土壤之植物毒性試驗-Neübauer生物試驗...............................34 六、資料統計分析...................................................................................................37 第二節 以 Dowex M4195 及 Chelex 100 樹脂之鉻抽出量評估不同 pH 值之 Cr(VI) 污染酸性土壤中 Cr(III) 及 Cr(VI) 之植物毒性........................38 一、酸性土壤 pH 值之調整及鉻污染土壤樣品之製備....................................38 二、不同 pH 值之鉻污染酸性土壤中樹脂之鉻抽出量......................................41三、以XANES圖譜鑑定不同 pH 值之 Cr(VI) 污染土壤中鉻形態及 Cr(VI) 之還原程度........................................................................................44 四、不同 pH 值之鉻污染酸性土壤中 Cr(III) 及 Cr(III) 之植物毒性- Neübauer生物試驗.........................................................................................47 五、資料統計分析...................................................................................................48 第三章、結果與討論.......................................................................................................49 第一節 以 Chelex 100 樹脂之鉻可抽出量評估 Cr(III) 之植物毒性..................49 一、溶液試驗...........................................................................................................49 二、不同供試土壤中 Chelex 100 樹脂之鉻可抽出量........................................54 三、不同供試土壤中 Cr(III) 之植物毒性............................................................62 第二節 同時以 Dowex M4195 及 Chelex 100 樹脂之鉻抽出量評估不同 pH 值 之 Cr(VI) 污染酸性土壤中 Cr(III) 及 Cr(VI) 之植物毒性...................78 一、同時以 Chelex 100 與 Dowex M4195 樹脂之鉻抽出量評估添加 Cr(VI) 之酸性土壤中 Cr(III) 與 Cr(VI) 之植物毒性............................................78 (一)供試土壤基本性質.................................................................................78 (二)添加 Cr(VI) 酸性土壤中Chelex 100與Dowex M4195 樹脂之鉻抽 出量.......................................................................................................80 (三)Chelex 100 樹脂之鉻可抽出量與添加 Cr(VI) 後土壤 pH 值變化...........................................................................................................84 (四)添加 Cr(VI) 之酸性土壤孵育後之 XANES 圖譜...........................87 (五)土壤有機質對酸性土壤中所添加 Cr(VI) 還原程度之影響.............91 (六)添加 Cr(VI) 酸性土壤中 Cr(III) 與 Cr(VI) 之植物毒性................93 二、同時以 Chelex 100 與 Dowex M4195 樹脂之鉻抽出量評估添加 Cr(VI) 之不同 pH 值酸性土壤中 Cr(III) 與 Cr(VI) 之植物毒性.......................98 (一)添加CaCO3以改變土壤pH 值-石灰孵育法....................................98 (二)添加鉻之不同 pH 值土壤中樹脂之鉻抽出量...............................101 (三) 添加 Cr(VI) 之不同 pH 值土壤之 XANES 圖譜......................109 (四)添加不同濃度 Cr(III) 之不同 pH 值土壤中鉻之植物毒害.........116 (五)添加不同濃度 Cr(VI) 之不同pH值土壤中鉻之植物毒害..........130 第四章、結論.................................................................................................................143 第五章、參考文獻.........................................................................................................145 附錄...............................................................................................................................158 | |
| dc.language.iso | zh-TW | |
| dc.subject | 還原 | zh_TW |
| dc.subject | 鉻 | zh_TW |
| dc.subject | 植物毒性 | zh_TW |
| dc.subject | Chelex 100樹脂 | zh_TW |
| dc.subject | Dowex M4195樹脂 | zh_TW |
| dc.subject | Chelex 100 resin | en |
| dc.subject | reduction | en |
| dc.subject | Dowex M4195 resin | en |
| dc.subject | chromium | en |
| dc.subject | phytotoxicity | en |
| dc.title | 以樹脂可抽出 Cr(III) 及 Cr(VI) 評估鉻污染土壤中之鉻植物毒性 | zh_TW |
| dc.title | Assessing the phytotoxicity of chromium in Cr-contaminated soil by using resin extractable Cr(III) and Cr(VI) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳仁炫,賴朝明,陳尊賢,何聖賓,鍾仁賜,王尚禮,廖秋榮 | |
| dc.subject.keyword | 鉻,植物毒性,Chelex 100樹脂,Dowex M4195樹脂,還原, | zh_TW |
| dc.subject.keyword | chromium,phytotoxicity,Chelex 100 resin,Dowex M4195 resin,reduction, | en |
| dc.relation.page | 162 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-03-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
