請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41410
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢 | |
dc.contributor.author | Tzu-Hsuan Chen | en |
dc.contributor.author | 陳姿璇 | zh_TW |
dc.date.accessioned | 2021-06-15T00:18:31Z | - |
dc.date.available | 2010-03-21 | |
dc.date.copyright | 2009-03-23 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-03-18 | |
dc.identifier.citation | 林月金、高德錚. 2005. 臺灣番石榴產業分析. 臺中區農業專訊 51:4-6
林正忠、賴秋炫、蔡淑芬. 1998. 水晶拔病害簡介. 農業世界雜誌 174:55-57. 胡適宜. 1990. 雌配子體. p. 106. 刊於:胡適宜編著. 被子植物胚胎學. 曉園出版社. 臺北. 陳敏祥. 1988. 植物生長調節劑在番石榴果實無子化之應用. 植物生長調節劑在園藝作物之應用研討會專集. p. 241-251. 黃明雅. 2007. 番石榴品種選育.行政院農業委員會高雄區農業改良場96年報.p. 59. 劉玠吟. 2004. 無籽番石榴之倍體數、花粉活力及雜交稔實率. 國立屏東科技大學農園生產系碩士論文. 屏東. 謝鴻業. 1998. 臺灣番石榴品種的演進與發展. 農業世界雜誌 174:23-25. 謝鴻業. 2000. 珍珠拔與水晶拔之特性與栽培管理. 高雄區農業專訊 31:16-17. Atchison, E. 1947. Chromosome numbers in the Myrtaceae. Amer. J. Bot. 34:159-164. Balasubramaniam, V.R. and G. Rangaswamy. 1959. Parthenocarpy in guava induced by pollen hormone. Curr. Sci. 28:413-415. Bradley, M.V. and J.C. Crane. 1962. Cell division and enlargement in mesocarp parenchyma of gibberellins-induced parthenocarpic peaches. Bot. Gaz. 123:243-246. Cano-Medrano, R. and R. L. Darnell. 1998. Effect of GA3 and pollination on fruit set and development in Rabbiteye blueberry. HortScience 33:632-635. Chang, J.C. and T.S. Lin. 2006. GA3 increases fruit weight in ‘Yu Her Pau’ litchi. Scientia Hort. 108:442-443. Chen, H.Q. and K.L. Dekkers. Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum. HortScience 41:1317-1321. Choi, C., P.A. Wiersma, P. Toivonen, and F. Kappel. Fruit growth, firmness and cell wall hyfrolytic enzyme activity during development of sweet cherry fruit treated with gibberellic acid (GA3). J. Hort. Sci. Biotechnol. 77:615-621. Coimbra, S. and R. Salema. 1999. Ultrastructure of the developing and fertilized embryo sac of Amaranthus hypochondriacus L. Ann. Bot. 84:781-789. D’Cruz, R. and G.B. Rao. 1962. Cytogenetic studies in two guava aneuploids. J. Indian Bot. Soc. 41:316-321. Dag, A. and Y. Mizrahi. 2005. Effect of pollination method on fruit set and fruit characteristics in the vine cactus Selenicereus megalanthus (‘yellow pitaya’). J. Hort. Sci. Biotechnol. 80:618-622. Darlingron, C.D. and J. Ammal. 1945. Chromosome Atlas of Cultivated Plants. George Allen & Unwinn Ltd., London. Davies, F.S. and G. Zalman. 2006. Gibberellic acid, fruit freezing, and post-freeze quality of ‘Hamlin’ oranges. HortTechnology 16:301-305. Denny, J.O. 1992. Xenia includes metaxenia. HortScience 27:722-728. El-Otmani, M., C.W.C. Jr, M. Agustí, and C.J. Lovatt. 2000. Plant growth regulators in citriculture: world current uses. Crit. Rev. Plant Sci. 19:395-447. Fellman, C., E. Hoover, P.D. Ascher, and J. Luby. 1991. Gibberellic acid-induced seedlessness in field-grown vines of ‘Swenson Red’ grape. HortScience 26:873-875. Freihat, N.M., A. Al-Ghzawi, S. Zaitoun, and A. Alqudah. 2008. Fruit set and quality of loquats (Eriobotrya japonica) as effected by pollinations under sub-humid Mediterranean. Scientia Hort. 117:58-62. García-Martínez, J.L. and M.A. García-Papí. 1979. The influence of gibberellic acid, 2,4-dichlorophenoxy-acetic acid and 6-benzylaminopurine on fruit-set of Clementine mandarin. Scientia Hort. 10:285-293. Gillaspy, G., H. Ben-David, and W. Gruissem. 1993. Fruits: a developmental perspective. Plant Cell 5:1439-1451. Hield, H.Z., C.W.C. Jr., and M.J. Garber. 1958. Gibberellin tested on citrus. Calif. Agric. 12:9-11. Kano, Y. 2003. Effects of GA and CPPU treatments on cell size and types of sugars accumulated in Japanese pear fruit. J. Hort. Sci. Biotechnol. 78:331-334. Kumar, L.S.S. and S.G. Ranade. 1952. Autotriploidy in guava (Psidium guajava L.). Curr. Sci. 3:75-76. Kwee, L.T. and K.K. Chong. 1990. Guava in Malaysia: Production, Pests and Diseases. Tropical Press Pte. Ltd., Kuala Lumpur, Malaysia. Lazan, H. and Z.M. Ali. 1998. Guava, p. 453. In: P.E. Shaw, H.T. Chan, Jr., and S. Nagy (eds.). Tropical and Subtropical Fruit. AgScience Press, Auburndale, Florida. Lenahan, O.M. and M.D. Whiting. 2006. Gibberellin acid inhibits floral bud induction and improves ‘Bing’ sweet cherry fruit quality. HortScience 41:654-659. Liu, Y. 2008. A novel mechanism for xenia. HortScience 43:706. Looney, N.E. and P.D. Lidster. 1980. Some growth regulator effects on fruit quality, mesocarp composition, and susceptibility to postharvest surface marking of sweet cherries. J. Amer. Soc. Hort. Sci. 105:130-134. Lu, J., O. Lamikanra, and S. Leong. 1995. Effects of gibberellic acid on muscadine grape production. Proc. Fla. State Hort. Soc. 108:360-361. Luckwill, L.C. 1960. The effect of gibberellic acid on fruit set in apples and pears. Ann. Rep. Long Ashton Res. Sta. 1959:59-64. Majumder, P.K. and R.N. Singh. 1964. Seedlessness in guava (Psidium guajava L.). Curr. Sci. 33:24. Majumder, P.K. and S.K. Mukherjee. 1970. Isolation of trisomics and tetrasomics in guava (Psidium gujava L.). Curr. Sci. 18:409-410. Miyajima, D. 2006. Ovules that failed to form seeds in zinnia (Zinnia violacea Cav.) Sci. Hort. 107:176-182. Mulcahy, D.L. and G.B. Mulcahy. 1983. Gametophytic self-incompatibility reexamined. Science 220:1247-1251. Murgia, M., B.Q. Huang, S.C. Tucker, and M.E. Musgrave. 1993. Embryo sac lacking antipodal cells in Arabidopsis thaliana (Brassicaceae). Amer. J. Bot. 80:824-838. Nakasone, H.Y. and R.E. Paull. 1998. Guava, p. 156-159. In: H.Y. Nakasone and R.E. Paull (eds.). Tropical Fruits. CAB International Press, Wallingford, UK. NeSmith, D.S., G. Krewer, M. Rieger, and B. Mullinix. 1995. Gibberellic acid-induced fruit set of rabbiteye bluberry following freeze and physical injury. HortScience 30:1241-1243. Nitsch, J., C. Pratt, C. Nitsch, and N. Shaulis. 1960. Natural growth substances in Concord and Concord seedless grapes in relation to berry development. Am. J. Bot. 47:566-576. Ortega, E., F. Dicenta, and J. Egea. 2007. Rain effect on pollen-stigma adhesion and fertilization in almond. Scientia Hort. 112:345-348. Ortega, E., J. Egea, and F. Dicenta. 2004. Effective pollination period in almond cultivars. HortScience 39:19-22. Pietilä, L. and P. Jokela. 1994. Developmental abnormalities in the ovule and embryo sac of ulluco (Ullucus tuberosus) and their effect on seed set. Euphytica. 75:31-39. Rajan, S., L.P. Yadava, R. Kumar, and S.K. Saxena. 2008. Direct and indirect effects of seed related characters on number of seed in guava (Psidium guajava L.) fruits. Scientia Hort. 116:47-51. Rallo, L., G.C. Martin, and S.Lavee. 1981. Relationship between abnormal embryo sac development and fruitfulness in olive. J. Amer. Soc. Hort. Sci. 106:813-817. Raman, V.S., S.R.S. Rangasamy, and M.G. Manimekalai. 1971. Triploidy and seedlessness in guava (Psidium guajava L.). Cytologia 36:392-399. Raman, V.S., W.M. Alikhan, G. Manimekalai, and R.S. Ramalingam. 1969. Observations on seedlessness, fruit development and cytology of varieties of guava. Madras Agric. J. 56:255-261. Rangasamy, S.R.S. and L.D.V. Das. 1973. Seedlessness in triploid guava (Psidium gujava L.): embryological studies. Can. J. Genet. Cytol. 15:331-334. Roberts, R. 1946. Notes on apple set and growth. Proc. Am. Soc. Hort. Sci. 48:59-62. Roitsch, T. and M.C. Gonzalez. 2004. Function and regulation of plant invertase: sweet sensations. Trends Plant Sci. 9:606-613. Rosellini, D., F. Ferranti, P. Barone, and F. Veronesi. 2003. Expression of female sterility in alfalfa (Medicago sativa L.). Sex. Plant Reprod. 15:271-279. Ruzin, S.E. 1999. Histochemistry and cytochemistry, p. 161-163. In: S.E. Ruzin (ed.). Plant Microtechnique and Microscopy. Oxford Univ. Press, New York. Sapir, G., R.A. Stern, S. Shafir, and M. Goldway. 2008. Full compatibility is superior to semi-compatibility for fruit set in Japanese plum (Prunus salicina Lindl.) cultivars. Scientia Hort. 116:394-398. Serrani, J.C., M. Fos, A. Atarés, and J.L. García-Martínez. 2007. Effect of gibberellins and auxin on parthenocarpic fruit growth induction in the cv. Micro-Tom of tomato. J. Plant Growth Regulat. 26:211-221. Seth, J.N. 1959. Causes of seedlessness in Psidium gujava L. Hort. Adv. 3:82-88. Shanker, G., R.N. Srivastava, R.B. Singh, and J.C. Edward. 1964. Occurrence of tetraploidy in guava (Psidium gujava L.). Allahabad Farmer 38:242-243. Shanmugvelu, K.G. 1962. A preliminary study on the induction of parthenocarpic guava by gibberellic acid. Indian J. Hort. 19:125-131. Sheridan, W.F. and B.Q. Huang. 1997. Nuclear behavior is defective in the maize (Zea mays L.) lethal ovule2 female gametophyte. Plant J. 11:1029-1041. Shiozaki, S., T. Miyagawa, T. Ogata, S. Horiuchi, and K. Kawase. 1997. Differences in cell proliferation and enlargement between seeded and seedless grape berries induced parthenocarpically by gibberellins. J. Hort. Sci. 72:705-712. Siddiqi, I., G. Ganesh, U. Grossniklaus, and V. Subbiah. 2000. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:197-207. Soost, R.K. 1958. Gibberellic acid on mandarin. Calif. Agric. 12:5. Southwick, S.M., K.G. Weis, and J.T. Yeager. 1995. Controlling cropping in ‘Loadel’ cling peach using gibberellins: effects on flower density, fruit distribution, fruit fimness, fruit thinning, and yield. J. Amer. Soc. Hort. Sci. 120:1087-1095. Spósito, M.B. and F.A.A.M. Filho. 2003. ‘Tahiti’ lime fruit set related to gibberellic acid application on out-of-season flowering and the accumulation of degree days. Fruits 58:151-156. Stutte, G.W. and J. Gage. 1990. Gibberellin inhibits fruit abscission following seed abortion in peach. J. Amer. Soc. Hort. Sci. 115:107-110. Tangmitcharoen, S. and J.N. Owens. 1997. Pollen viability and pollen-tube growth following controlled pollination and their relation to low fruit production in teak (Tectona grandis Linn. f.). Ann. Bot. 80:401-410. Teaotia, S.S., I.C. Pandey, and R.S. Mathur. 1961. Gibberellin induced parthenocarpy in guava (Psidium gujava L.). Curr. Sci. 30:312. Teaotia, S.S., I.C. Pandey, and R.S. Mathur. 1961. Gibberellin induced parthenocarpy in guava (Psidium gujava L.). Curr. Sci. 30:312. Tominaga, S. 1998. GA sprays delay and reduce physiological fruit drop in pokan mandarin (Citrus reticulate Blanco). Acta Hort. 463:301-305. Usenik, V., D. Kastelec, and F. Štampar. 2005. Physicochemical changes of sweet cherry fruits related to application of gibberellic acid. Food Chem. 90:663-671. Varga, A. and J. Bruinsma. 1986. Tomato, p. 461-480. In: S.P. Monselise (ed.). CRC Handbook of Fruit Set and Development. CRC Press, Boca Raton, FL. Varoquaux, F., R. Blanvillain, M. Delseny, and P. Gallois. 2000. Less is better: new approaches for seedless fruit production. Trends Biotechnol. 18:233-242. Whiting, M.D. and G.A. Lang. 2004. ‘Bing’ Sweet cherry on the dwarfing rootstock ‘Gisela 5’: thinning affects fruit quality and vegetative growth but not net CO2 exchange. J. Amer. Soc. Hort. Sci. 129:407-415. Yarushnykov, V.V. and M.M. Blanke. 2005. Alleviation of frost damage to pear flowers by application of gibberellins. Plant Growth Regulat. 45:21-27. Yusof, S. and S. Mohamed. 1987. Physico-chemical changes in guava (Pisdium guajava L.) during development and maturation. J. Sci. Food Agric. 38:31-39. Zhang, C., K. Tanabe, F. Tamura, A. Itai, and M. Yoshida. 2007. Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52:161-172. Zhang, C., K. Tanabe, F. Tzmura, K. Matsumoto, and A. Yoshida. 2005. 13C-phtosynthate accumulation in Japanese pear fruit during the period of rapid fruit growth is limited by the sink strength of fruit rather than by the transport capacity of the pedicel. J. Expt. Bot. 56:2713-2719. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41410 | - |
dc.description.abstract | ‘水晶拔’番石榴 (Psidium guajava L.)穩定少籽,有發展潛力,但少籽原因仍未知,且著果率低,故本研究探討少籽的原因及提高其著果率之方法。
以 ‘水晶拔’與 ‘珍珠拔’為母本,經由不同授粉方式與授粉來源,調查果實內種子數變化。以 ‘水晶拔’為母本時,種子數與種子密度顯著低於以 ‘珍珠拔’為母本之各處理,然而 ‘水晶拔’花粉能使 ‘珍珠拔’形成大量種子,種子數達300粒以上,顯示 ‘水晶拔’花粉具有足夠的正常花粉。 檢視 ‘水晶拔’花粉母細胞減數分裂,了解染色體數目與結構以確認花粉稔性。 ‘水晶拔’與 ‘珍珠拔’花粉母細胞,在減數分裂中期I染色體皆為11對二價體,然而少部分 ‘水晶拔’花粉母細胞染色體有異常,在減數分裂中期I染色體為11對二價體的細胞占51.2%,疑似三染體的細胞占17.4%,疑似轉座染色體的細胞占4.0%,顯示 ‘水晶拔’至少50%花粉其染色體結構與數目正常,可使 ‘珍珠拔’果實形成大量種子,因此花粉並非導致 ‘水晶拔’少籽之主因。 觀察‘水晶拔’開花當天未授粉胚囊,檢視其型態與結構以了解稔性。 ‘水晶拔’正常胚囊僅占13.7%,顯著較少,將異常胚珠歸納為NCAE (normal central cell and egg apparatus)、ACE (abnormal central cell and egg apparatus)、NES (no embryo sac)與OT (other abnormal type)類型,其中 ‘水晶拔’以NES占50.4 %顯著高於 ‘珍珠拔’,推論 ‘水晶拔’高異常比例的胚珠與胚囊,可能導致其少籽。 施用不同濃度GA3以了解其對於 ‘水晶拔’著果率之影響。2007年於開花當天施用GA3,能減緩落果,在花後42天,著果率以100 ppm處理最佳,達70%以上,然而達採收期時,各處理間著果率無差異。2008年於花前1天、花後14天與28天各施用一次50與100 ppm GA3,皆能顯著提高著果率直到果實成熟,著果率達50%以上。GA3促進 ‘水晶拔’著果及單為結果,雖然延遲約50%果實成熟,造成瘤狀外觀,但顯著增加果實大小與果重,提升單株產量。 | zh_TW |
dc.description.abstract | ‘Shuei Jing’ guava (Psidium guajava L.) is an almost seedless cultivar with great potential in Taiwan, but its fruit set and yields are usually low. I studied the cause of seedlessness and the way to increase fruit set in ‘Shuei Jing’ .
Different types of pollination and pollen donors were tried for investigating seed number in ‘Shuei Jing’ and ‘Jen Ju’ guava. When ‘Shuei Jing’ was the pollen acceptor, the seed number was significantly less than that of ‘Jen Ju’. However, ‘Shuei Jing’ served as pollen donor resulted in more than 300 seeds when ‘Jen Ju’ was the pollen acceptor. It indicated that pollens in ‘Shuei Jing’ were sufficiently functional for seed formation. The meiosis of microsporocyte was examined in ‘Shuei Jing’. In metaphase I, pollen mother cells with 11 associated bivalent in ‘Shuei Jing’ were as normal as those in ‘Jen Ju’. However, some of pollen mother cells showed aberrant chromosomes in ‘Shuei Jing’. The percentage of normal association, trisomics, and reciprocal translocation were 51.2, 17.4, and 4.0 respectively in ‘Shuei Jing’. There were at least 50% of pollens with normal number and structure of chromosomes in ‘Shuei Jing’. Furthermore, pollination with ‘Shuei Jing’ pollens resulted in numerous seeds in ‘Jen Ju’. These results suggested that pollens were not the main cause of seedlessness in ‘Shuei Jing’ guava. The morphology and structure of embryo sac in ‘Shuei Jing’ were investigated. There were 13.7% of ‘Shuei Jing’ with normal embryo sacs and were significantly less than those of ‘Jen Ju’. The abnormal ovules were classified in four types. NCAE meant the embryo sac with normal central cells but abnormal egg apparatus. ACE meant both central cells and egg apparatus were abnormal in the embryo sac. NES meant no embryo sac within an ovule. OT meant other few abnormal types of ovules. There were 50.4% ovules of ‘Shuei Jing’ belonged to NES and were significantly higher than those of ‘Jen Ju’. These results suggested that high percentage of abnormal ovules might be responsible for seedlessness in ‘Shuei Jing’. GA3 was applied to the flowers of ‘Shuei Jing’ guava to increase the fruit set. GA3 applied on the day of flowering increased the fruit set in 2007. The percentage of fruit set reached 70% in the treatment by GA3 at concentration of 100 ppm on 42 days after flowering (DAF). However, the percentages of fruit set among all treatments were not significantly different when fruits reach maturation. Applied on the day prior to flowering, 14 and 28 DAF with GA3 at 50 ppm and 100 ppm in 2008, the percentage of parthenocarpic fruit and fruit set reached 51% and 63% respectively and significantly higher than that of control. Even GA3 treatment resulted in tumorous appearance and delayed fruit maturation it still enhanced the fruit number, size, and yield in ‘Shuei Jing’ guava. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:18:31Z (GMT). No. of bitstreams: 1 ntu-98-R94628145-1.pdf: 1667818 bytes, checksum: fd4d71fb2d898795fc4d2fb6440eb67e (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄……………………………………………………………………………………i
圖目次………………………………………………………………………………....iii 表目次…………………………………………………………………………………iv 中文摘要………………………………………………………………………………v 英文摘要………………………………………………………………………………vi 前言 Introduction……………………………………………………………………..1 第一章 前人研究 Literature Review………………………………………………...4 參考文獻……………………………………………………………………………...15 第二章 胚珠異常導致 ‘水晶拔’番石榴( Psidium guajava L.)少籽………………..23 Seedlessness Resulted from Abnormal Ovules in ‘Shuei Jing’ Guava ( Psidium guajava L.) 2.1 摘要……………………………………………………………………………24 2.2 前言……………………………………………………………………………24 2.3 材料與方法……………………………………………………………………26 2.4 結果……………………………………………………………………………28 2.5 討論……………………………………………………………………………30 2.6 結論……………………………………………………………………………33 參考文獻…………………………………………………………………………...34 第三章 施用GA3 提升‘水晶拔’番石榴(Psidium guajava L.)果實著果…………...54 GA3 Improved Fruit Set in ‘Shuei Jing’ Guava (Psidium guajava L.) 3.1 摘要……………………………………………………………………………55 3.2 前言……………………………………………………………………………55 3.3 材料與方法……………………………………………………………………56 3.4 結果……………………………………………………………………………58 3.5 討論…………………………………………………………………………….59 3.6 結論…………………………………………………………………………….62 參考文獻……………………………………………………………………………63 第四章 總結 Conclution……………………………………………………………...80 附錄一 石蠟切片製作與染色………………………………………………………..81 附錄二 ‘水晶拔’經GA3處理後於花後14天果實外觀…………………………….83 附錄三 2008年 ‘水晶拔’經GA3處理後隨花後天數果實縱橫徑變化…………....84 附錄四 不同花後天數 ‘水晶拔’果實果形指數……………………………………..85 圖目次 Index of Figures 圖 2-1. ‘珍珠拔’與 ‘水晶拔’花前二天、花前一天及開花當天之花朵外觀……....39 圖 2-2. ‘水晶拔’與 ‘珍珠拔’經不同授粉源與授粉方式所得果實之果梗俯視觀、果實側面觀及果實縱剖面…………………………………………………….................40 圖 2-3. ‘水晶拔’與 ‘珍珠拔’開放授粉果實縱剖面放大觀………………………….41 圖 2-4. ‘珍珠拔’減數分裂中期染體………………………………………………….42 圖 2-5. ‘水晶拔’正常與異常染色體………………………………………………….43 圖 2-6. ‘珍珠拔’及 ‘水晶拔’開花當天之子房縱切面……………………………….44 圖 2-7. ‘珍珠拔’開花當天未授粉之正常胚囊……………………………………….45 圖 2-8. ‘水晶拔’開花當天未授粉之正常胚囊……………………………………….46 圖 2-9. ‘水晶拔’開花當天未授粉之NCAE胚囊……………………………………47 圖 2-10. ‘水晶拔’開花當天未授粉之ACE胚囊…………………………………….48 圖 2-11. ‘水晶拔’開花當天未授粉之NES胚珠……………………………………..49 圖 2-12. ‘水晶拔’開花當天未授粉胚囊之其他異常類型…………………………...50 圖 3-1. ‘水晶拔’經不同濃度GA3處理後於花後21天之果實型態………………..68 圖 3-2. 2007年施用不同濃度GA3於 ‘水晶拔’,在不同花後天數遇大雨(箭號)之著果情形………………………………………………………………………….69 圖 3-3. 2007年與2008年 ‘水晶拔’經不同濃度GA3處理後於不同花後天數之著果率……………………………………………………………………………….70 圖 3-4. ‘水晶拔’經不同濃度GA3處理後於採收成熟期之(A)果實側面觀與(B)果萼端……………………………………………………………………………….71 圖 3-5. 2008年 ‘水晶拔’果實經GA3處理後果形出現扭曲……………………….72 圖 3-6. 2008年 ‘水晶拔’果實內(A)褐化萎縮之胎座與(B)正常胎座之縱剖面……73 圖 3-7. ‘水晶拔’果實表面瘤狀程度之分級………………………………………….74 表目次 Index of Tables 表2-1. 2007年10月不同授粉源與授粉方式對‘水晶拔’及‘珍珠拔’之著果率、果重與果實內種子數影響…………………………………………………………51 表 2-2. 2007年12月不同授粉源與授粉方式對‘水晶拔’及‘珍珠拔’之著果率、果重與果實內種子數影響…………………………………………………………52 表2-3. ‘水晶拔’與 ‘珍珠拔’開花當天之未授粉胚囊類型…………………………53 表3-1. 2007年 ‘水晶拔’經不同濃度GA3處理後達採收成熟度之著果率、果重、糖度及果實表面瘤狀情形之比較………………………………………………75 表3-2. 2008年 ‘水晶拔’經不同濃度GA3處理後達採收成熟度時,果實採收期、著果率、果實外觀、果實重量與果實種子情形之比較………………………76 表3-3. 2008年 ‘水晶拔’經不同濃度GA3處理後達採收成熟度果實表面之瘤狀突起程度…………………………………………………………………………….77 表3-4. 2008年 ‘水晶拔’經不同濃度GA3處理後達採收成熟度果實各部位糖度之比較……………………………………………………………………………….78 表3-5. 2008年 ‘水晶拔’經不同濃度GA3處理後於不同花後天數採收果實各部位顏色( L, a, b value)之比較……………………………………………………….79 | |
dc.language.iso | zh-TW | |
dc.title | 胚珠異常導致 ‘水晶拔’番石榴少籽並施用GA3提升其著果率 | zh_TW |
dc.title | Seedlessness Resulted from Abnormal Ovules and Fruit Set Improved by GA3 in ‘Shuei Jing’ Guava
(Psidium guajava L.) | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳幼光,鍾美珠 | |
dc.contributor.oralexamcommittee | 黃玲瓏 | |
dc.subject.keyword | 水晶拔,少籽,花粉,花粉母細胞,胚珠,胚囊,著果,GA3, | zh_TW |
dc.subject.keyword | Seedlessness,Pollen,Pollen mother cell,Ovule,Embryo sac,Fruit set,GA3, | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-03-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。