請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡益坤 | |
| dc.contributor.author | Yu-Fang Chen | en |
| dc.contributor.author | 陳郁方 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:17:52Z | - |
| dc.date.available | 2009-05-12 | |
| dc.date.copyright | 2009-05-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-05-01 | |
| dc.identifier.citation | [1] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional veri cation by learning
assumptions. In Proceedings of the 17th International Conference on Computer-Aided Veri cation (CAV 2005), LNCS 3576, pages 548~562. Springer, 2005. [2] D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87~106, 1987. [3] A. Arnold. A syntactic congruence for rational omega-language. Theoretical Computer Science, 39:333~335, 1985. [4] H. Barringer, D. Giannakopoulou, and C.S. P as areanu. Proof rules for automated compositional veri cation through learning. In Proceedings of the 2nd International Workshop on Speci caiton and Veri caiton of Component Based System (SVCBS 2003), pages 14~21, 2003. [5] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 1999), LNCS 1579, pages 193~207. Springer, 1999. 113 [6] R.E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys, 24:293~318, 1992. [7] N.H. Bshouty. Exact learning via the monotone theory. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS 1993), pages 302~311. Springer, 1993. [8] J.R. Buchi. On a decision method in restricted second-order arithmetic. In Proceedings of the International Congress on Logic, Methodology and Philosophy of Science, pages 1~11. Standford University Press, 1962. [9] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking: 1020 states and beyond. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS 1990), pages 428~439, 1990. [10] H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational !-languages. In Proceedings of the 9th International Conference on Mathematical Foundations of Programming Semantics (MFPS 1993), LNCS 802, pages 554~566. Springer, 1993. [11] S. Chaki, E.M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for simulation conformance. In Proceedings of the 17th International Conference on Computer-Aided Veri cation (CAV 2005), LNCS 3576, pages 534~547. Springer, 2005. [12] S. Chaki and O. Strichman. Optimized L*-based assume-guarantee reasoning. In Proceedings of the 13th International Conference on Tools and Algorithms for the Construc- 114 tion and Analysis of Systems (TACAS 2007), LNCS 4424, pages 276~291. Springer, 2007. [13] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV version 2: an opensource tool for symbolic model checking. In Proceedings of the 14th International Conference on Computer-Aided Veri cation (CAV 2002), LNCS 2404, pages 359~364. Springer, 2002. [14] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999. [15] J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke. Breaking up is hard to do: An investigation of decomposition for assume-guarantee reasoning. In Proceedings of the 2006 International Symposium on Software Testing and Analysis (ISSTA 2006), pages 97~108, 2006. [16] J.M. Cobleigh, D. Giannakopoulou, and C.S. P as areanu. Learning assumptions for compositional veri cation. In Proceedings of the 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2003), LNCS 2619, pages 331~346. Springer, 2003. [17] A. Farzan, Y.-F. Chen, E.M. Clarke, Y.-K. Tsay, and B.-Y.Wang. Extending automated compositional veri cation to the full class of omega-regular languages. In Proceedings of the 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008), LNCS 4963. Springer, 2008. 115 [18] P. Gastin and D. Oddoux. Fast LTL to Buchi automata translations. In Proceedings of the 13th International Conference on Computer-Aided Veri cation (CAV 2001), LNCS 2102, pages 53~65. Springer, 2001. [19] R. Gavalda and D. Guijarro. Learning ordered binary decision diagrams. In Proceedings of the 6th International Workshop on Algorithmic Learning Theory (ALT 1999), LNAI 997, pages 228~238. Springer, 1995. [20] M. Gheorghiu, D. Giannakopoulou, and C.S. P as areanu. Re ning interface alphabets for compositional veri cation. In Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007), LNCS 4424, pages 292~307. Springer, 2007. [21] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants automatically. In Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR 2006), LNAI 4130, pages 483~497. Springer, 2006. [22] A. Gupta, K.L. McMillan, and Z. Fu. Automated assumption generation for compositional veri cation. In Proceedings of the 19th International Conference on Computer- Aided Veri cation (CAV 2005), LNCS 4590, pages 420~432. Springer, 2007. [23] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison- Wesley, 2003. [24] J.E. Hopcroft. A n log n algorithm for minimizing states in a nite automaton. Technical report, Stanford University, 1971. 116 [25] O. Maler and A. Pnueli. Learning omega-regular languages from queries and counterexamples (a preliminary report). In Proceedings of the International Workshop on Analogical and Inductive Inference (AII 1989), LNCS 397, pages 161~170. Springer, 1989. [26] O. Maler and A. Pnueli. On the learnability of in nitary regular sets. Information and Computation, 118(2):316~326, 1995. [27] Z. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report STANCS- 87-1186, Stanford University, Department of Computer Science, 1987. [28] V.M. Manquinho, P.F. Flores, J.P. Marques-Silva, and A.L. Oliveira. Prime implicant computation using satis ability algorithms. In Proceedings of the 9th IEEE International Conference on Tools with Arti cial Intelligence (ICTAI 1997), pages 232~239, 1997. [29] M. Michel. Complementation is more di cult with automata on in nite words. In CNET, Paris, 1988. [30] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha : Engineering an e cient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC 2001), pages 530~535, 2001. [31] A. Nakamura. An e cient query learning algorithm for ordered binary decision diagrams. Information and Computation, 201(2):178~198, 2005. [32] W. Nam and R. Alur. Learning-based symbolic assume-guarantee reasoning with automatic decomposition. In Proceedings of the 4th International Symposium on Automated 117 Technology for Veri cation and Analysis (ATVA 2006), LNCS 4218, pages 170~185. Springer, 2006. [33] A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical Society, 9(4):541~544, 1958. [34] M.C. Paull and S.H. Unger. Minimizing the number of states in incompletely speci ed sequential switching functions. IRE Trans. on Electronic Computers, EC-8:356~366, 1959. [35] J.M. Pena and A.L. Oliveira. A new algorithm for the reduction of incompletely speci ed nite state machines. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD 1998), pages 482~489. ACM Press, 1998. [36] D. Perrin and J.E. Pin. In nite Words: Automata, Semigroups, Logic and Games. Academic Press, 2003. [37] B. Reusch and W. Merzenich. Minimal coverings for incompletely speci ed sequential machines. Acta Informatica, 22:663~678, 1986. [38] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for the minimization of incompletely speci ed state machines. IEEE Transitions on Computer-Aided Design of Integrated Circuits and Systems, 13(2):167~177, 1994. [39] R.L. Rivest and R.E. Schapire. Inference of nite automata using homing sequences. Information and Computation, 103(2):299~347, 1993. 118 [40] N. Sharygina, S. Chaki, E.M. Clarke, and N. Sinha. Dynamic component substitutability analysis. In Proceedings of the 13th International Symposium of Formal Methods Europe (FME 2005), LNCS 3582, pages 512~528. Springer, 2005. [41] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induction and a sat-solver. In Proceedings of the 3rd International Conference on Formal Methods in Computer-Aided Design (FMCAD 2000), LNCS 1954, pages 108~125. Springer, 2000. [42] N. Sinha and E.M. Clarke. SAT-based compositional veri cation using lazy learning. In Proceedings of the 19th International Conference on Computer-Aided Veri cation (CAV 2007), LNCS 4590, pages 39~54. Springer, 2007. [43] F. Somenzi and R. Bloem. E cient Buchi automata from LTL formulae. In Proceedings of the 12th International Conference on Computer-Aided Veri cation (CAV 2000), LNCS 1855, pages 248~263. Springer, 2000. [44] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. GOAL: A graphical tool for manipulating Buchi automata and temporal formulae. In Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007), LNCS 4424, pages 466~471. Springer, 2007. [45] D.L. Van, B. Le Saec, and I. Litovsky. Characterizations of rational omega-languages by means of right congruences. Theoretical Computer Science, 143(1):1~21, 1995. 119 [46] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri cation. In Proceedings of the 1st Annual IEEE Symposium on Logic in Computer Science (LICS 1986), pages 332~344, 1986. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41388 | - |
| dc.description.abstract | 自動化組合式驗證被普遍認為是增進模型驗證效率及可處理規模的重要方法。在這方法背後的基本想法是各個擊破。他運用一個假設-保證式推論規則來把驗證一個系統的工作拆解成數個驗證其組成元件的子工作。使用這個方法最困難的地方,在於如何找到一個適用的環境假設。這個尋找的工作通常需要靠人工完成。在過去六年中,在透過機器學習的方式來自動化假設-保證式的組合式自動驗證這個主題上,有非常多的研究發表。然而,大部分目前發表的結果並不能真的增進模型驗證方法的效率,而且能檢查的性質也很有侷限。在這篇論文中,我們指出了現今自動化組合式驗證方法的根本問題,並且提出解決方案。
我們找出了三個主要的問題。其一、大部分的成果是啟發式的方法。他們不能保證找到最小(佳)的環境假設。其二、他們全部是顯性-狀態的方法;他們列舉出環境假設的所有可能狀態。其三、所有之前提出的方法都不能檢驗liveness性質。檢查這類性質的對於完整的檢查一個系統是否正確是不可或缺的。 針對這三個問題,我們提出了建議的解答並透過實驗來評估他們的效果。相對於啟發式的方法,我們提出了能保證找到最小環境假設的演算法。這個方法的關鍵技術是一個最小分隔DFA的機器學習演算法。我們的演算法的查詢複雜度僅有平方次數,相對的,目前最近的演算法(由Gupta等提出的)是指數次數的。此外,實驗結果也顯現了我們的方法明顯的優於所有之前提出的作法。 我們發展了第一個完全隱含狀態的自動化組合式驗證演算法。這個方法避免掉使用L*機器學習演算法。他利用Bshouty提出的對於布林函式的機器學習方法作為核心。我們也透過實驗來評出這個方法並提出了很多可能的改良方向。 此外,我們把自動化組合式驗證擴充至能處理Liveness性質。關鍵的技術是一個對於任意無限長度規則語言(Omega規則語言)的機器學習演算法。Omega規則語言的機器學習是一個從1989開始的開放問題。 我們解決的問題對於自動化組合式驗證技術而言是根本而重要的。因為這些問題都跟源自L*演算法,這演算法被大多數的自動化組合式驗證方法採用。在這篇論文中,我們並沒有解決自動化組合式驗證所有的問題。但是我們相信我們的成果會是自動化組合式驗證技術的一個重要里程碑。 | zh_TW |
| dc.description.abstract | Compositional verification is a promising approach to scale up Model Checking (a fully automatic approach to hardware/software design verification) to large designs. The basic idea behind this approach is divide-and-conquer. It utilizes an assume-guarantee rule to break a
task of verifying a system down to subtasks of verifying its components. The major difficulty in using an assume-guarantee rule is to search for appropriate contextual assumptions (the environments provided by other components); the search usually requires human intervention. In the past six years, several approaches based on machine learning techniques have been proposed to automate the assume-guarantee style of composition verification under a language theoretical framework. However, most of the currently proposed approaches do not really improve the efficiency of Model Checking and can only handle a restricted class of properties. In this thesis, we point out fundamental problems of the state-of-the-art automated compositional verification approaches and propose solutions to alleviate these problems. Three major problems of the previous approaches are identified in this thesis. First, most of the approaches are heuristics and cannot guarantee finding a minimal contextual assumption, even if there exists one. Second, all of the algorithms that have been proposed so far are explicit-state approaches; they explicitly construct the complete transition systems of the intermediate assumptions. Third, all of the previous approaches cannot handle liveness properties, which are essential to verify the correctness of a system. For the three problems, we suggest solutions and evaluate them via experiments. Contrasting to algorithms that are based on heuristics, we propose an algorithm that guarantees finding the minimal contextual assumption for assume-guarantee reasoning. The key technique involved is a learning algorithm for minimal separating DFA's. Our learning algorithm for minimal separating DFA's has a quadratic query complexity. In contrast, the most recent algorithm of Gupta et al. is exponential. Moreover, experimental results show that our learning algorithm significantly outperforms all existing algorithms on a large number of example problems. We develop the first fully implicit-state algorithm for automated compositional verification. This algorithm avoids using the L* learning algorithm, which explicitly enumerates every state of a conjecture DFA, to find contextual assumptions. Instead, it uses Bshouty's learning algorithm for boolean functions as the core. We evaluate the new algorithm via experiments and suggest directions for further improvements. Moreover, we extend automated compositional verification to verify liveness properties by presenting an algorithm to learn an arbitrary regular set of infinite sequences (omega regular language) over an alphabet . The most important breakthrough involved in this extension is that we solved the problem of learning omega-regular languages using queries and counterexamples, which has been open since 1989. The problems we solved are important and fundamental because they are rooted from the L algorithm, which is the foundation of the mainstream automated compositional verification approaches. There are still other problems that we have not addressed in this thesis. Although we do not cover all problems of the automated compositional verification approaches, we believe that our results are important milestones on the way toward a complete solution to automated compositional verification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:17:52Z (GMT). No. of bitstreams: 1 ntu-98-D93725005-1.pdf: 1367363 bytes, checksum: a20614c1bc9592d3986f2883a91776a9 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents i
1 Introduction 1 1.1 Automated Compositional Verification . . . . . . . . . 2 1.2 The Goal of This Thesis . . . . . . . . . . . . . . . 7 2 Preliminaries and Related Work 10 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . 10 2.2 The L* Algorithm . . . . . . . . . . . . . . . . . . .11 2.2.1 Myhill-Nerode Theorem . . . . . . . . . . . . . . . 12 2.2.2 The Observation Table . . . . . . . . . . . . . . . 14 2.2.3 Making a Conjecture DFA . . . . . . . . . . . . . . 15 2.2.4 Extracting a Valid Experiment . . . . . . . . . . . 15 2.2.5 Correctness and Complexity . . . . . . . . . . . . .17 2.2.6 An Example . . . . . . . . . . . . . . . . . . . . .18 2.3 Automating Assume-Guarantee Reasoning by L Learning .18 2.3.1 Cobleigh et al.: A Non-Symmetric Rule . . . . . . . 20 2.3.2 Barringer et al.: Symmetric Rules . . . . . . . . . 22 2.3.3 Some Other Researches on Automated Assume-Guarantee Reasoning . 25 2.4 Common Problems of the L-Based Approaches . . . . . .26 3 Finding Minimal Assumptions 29 3.1 Definitions . . . . . . . . . . . . . . . . . . . . . 32 3.2 Overview of Learning a Minimal Separating DFA . . . . 37 3.3 The LSep Algorithm . . . . . . . . . . . . . . . . . .39 3.3.1 Correctness . . . . . . . . . . . . . . . . . . . . 42 3.3.2 Complexity Analysis . . . . . . . . . . . . . . . . 43 3.3.3 Details of the Candidate Generator . . . . . . . . .45 3.4 Adapting LSep to Compositional Verification . . . . . 52 3.5 Experimental Results . . . . . . . . . . . . . . . . .57 3.5.1 Experiment 1 . . . . . . . . . . . . . . . . . . . .57 3.5.2 Experiment 2 . . . . . . . . . . . . . . . . . . . .60 3.6 Summary of This Chapter . . . . . . . . . . . . . . . 63 4 An Implicit-State Algorithm 65 4.1 Definition . . . . . . . . . . . . . . . . . . . . . 66 4.2 SAT-Based Unbounded Model Checking Algorithm for Language Containment 68 4.3 Learning Boolean Functions . . . . . . . . . . . . . 72 4.3.1 Learning a Monotone Function . . . . . . . . . . . 73 4.3.2 Learning a CDNF Formula of a Target Function . . . 74 4.4 Implicit-State Algorithms for Compositional Verification . . . . . . . . . . . . 76 4.5 Preliminary Experimental Results . . . . . . . . . . 82 4.6 Summary of This Chapter . . . . . . . . . . . . . . .84 5 Extension to !-Regular Properties 85 5.1 Definitions . . . . . . . . . . . . . . . . . . . . .87 5.2 Ultimately Periodic Words . . . . . . . . . . . . . .88 5.3 Learning !-Regular Languages . . . . . . . . . . . . 92 5.3.1 Generating [u$v]^$ from uv^w . . . . . . . . . . . 98 5.4 Optimizations . . . . . . . . . . . . . . . . . . . 104 5.5 Preliminary Experimental Results . . . . . . . . . .106 5.6 Summary of This Chapter . . . . . . . . . . . . . . 108 6 Conclusion 109 6.1 Contributions . . . . . . . . . . . . . . . . . . . 110 6.2 Looking into the Future . . . . . . . . . . . . . . 111 Bibliography . . . . . . . . . . . . . . . . . . . . . 113 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 模型驗證 | zh_TW |
| dc.subject | 規則語言 | zh_TW |
| dc.subject | Omega規則語言 | zh_TW |
| dc.subject | L* | zh_TW |
| dc.subject | Machine Learning | en |
| dc.subject | Omega Regular Language | en |
| dc.subject | Regular Language | en |
| dc.subject | Model Checking | en |
| dc.subject | L* | en |
| dc.title | 自動化組合式驗證:問題、解答、實驗 | zh_TW |
| dc.title | Automated Compositional Verification: Problems, Solutions, and Experiments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王柏堯,王大為,江介宏,黃鐘揚,熊博安,愛德蒙 克拉克(Edmund Clarke) | |
| dc.subject.keyword | 模型驗證,機器學習,L*,規則語言,Omega規則語言, | zh_TW |
| dc.subject.keyword | Model Checking,Machine Learning,L*,Regular Language,Omega Regular Language, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-05-01 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
