請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41363完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din-Ping Tsai) | |
| dc.contributor.author | Huai-Yi Xie | en |
| dc.contributor.author | 謝懷毅 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:16:49Z | - |
| dc.date.available | 2010-06-02 | |
| dc.date.copyright | 2009-06-02 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-05-26 | |
| dc.identifier.citation | [1] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988)
[2] J. H. Huang, R. Chang, P. T. Leung and D. P. Tsai, Opt. Commun. 282, 1412 (2009) [3] W. A. Murray and W. L. Barnes, Adv. Matter. 19, 3771 (2007) [4] R. W. Wood, Proc. Phys. Soc. London 18, 269 (1902) [5] G. J. Griffiths, Introduction to Electrodynamics 3rd (1999) [6] J. D. Jackson, Classical Electrodynamics (1962), 3rd (1999) [7] M. Fox, Optical Properties of Solids (2002) [8] G. R. Fowles, Introduction to Modern Optics (1972) [9] Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang, J. Phys. Chem. B. 101, 6661 (1997) [10] S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999) [11] L. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003) [12] J. T. Krug, G. D. Wang, S. R. Emory and S. Nie, J. Am. Chem. Soc. 121, 9208 (1999) [13] H. Xu, J. Aizpurua, M. Käll and P. Apell, Phys. Rev. E 62, 4318 (2000) [14] M. Michaels, M. Nirmal and L. E. Brus, J. Phys. Chem. B 104, 11965 (2000) [15] M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett. 26, 123 (1974) [16] A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48, 957 (1982) [17] S. M. Nie and S. R. Emery, Science 275, 1102 (1997) [18] S. V. Gaponenko, A. A. Gaiduk, O. S. Kulakovich, S. A. Maskevich, N. D. Strekal and V. M. Shelekhina, JETP Letters 74, 309 (2001) [19] D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000) [20] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Lin and D. P. Tsai, Jpn. J. Appl. Phys. 40, 4101 (2001) [21] T. C. Chu, W. C. Liu and D. P. Tsai, Opt. Commun. 246, 561 (2005) [22] W. T. Lu and S. Sridhar, Phys. Rev. B 77, 233101 (2008) [23] B. Wood, J. B. Pendry and D. P. Tsai, Phys. Rev. B 74, 115116 (2006) [24] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968) [25] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) [26] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996) [27] S. I. Maslovski, S. A. Tretyakov and P. A. Belov, Microwave Opt. Tech. Lett. 35, 47 (2002) [28] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999) [29] R. A. Shlby, D. R. Smith and S. Schultz, Science 292, 77 (2001) [30] P. Halevi, Spatial Dispersion in Solids and Plasmas edited by (North-Holland, Amsterdam, 1992) [31] D. L. Mills, Nonlinear Optics: Basic Concepts, 2nd edn Springer, New York (2006) [32] S A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005) [33] G. Barton, Rep. Prog. Phys. 42, 65 (1979) [34] R. Chang and P. T. Leung, Phys. Rev. B 73, 125438 (2006); ibid 75, 079901(E) (2007) [35] R. J. Potton, Rep. Prog. Phys. 67, 717 (2004) [36] M. Iwanaga, A. S. Vengurlekar, T. Hatano and T. Ishihara, Am. J. Phys. 75, 899 (2007) [37] R. Chang and P. T. Leung, J. Opt. A 10, 075201 (2008) [38] A. Malinowski, Yu P. Svirko and N. I. Zheludev, J. Opt. Soc. Am. B 13, 1641 (1996) [39] D. E. Bilhorn, L. L. Foldy, R. M. Thaler, W. Tobocman and V. A. Madsen, J. Math. Phys. 5, 435 (1964) [40] Z. Ahmed, Phys. Rev. A 64, 042716 (2001) [41] R. R. Chance, A. Prock and R. Silbey, Adv. Chem. Phys. 37, 1 (1978) [42] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy and X. Zhang, Science 321, 930 (2008) [43] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang, Nature 455, 376 (2008) [44] T. Förster, Ann. Phys. 2, 55 (1948) [45] T. Förster, Discuss Faraday Soc. 27, 7 (1959) [46] X. M. Hua, J. I. Gersten and A. Nitzan, J. Chem. Phys. 83, 3650 (1985) [47] R. Rojas, F. Claro and R. Fuchs, Phys. Rev. B 37, 6799 (1988) [48] Arnold Sommerfeld, Partial Differential Equations in Physics (1964) [49] L. C. Evans, Partial Differential Equations (1998) [50] G. B. Arfken and H. J. Weber, Mathematical method for physicists 2nd (1970), 5th (2001) [51] K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering 2nd (2002) [52] J. Schwinger, L. L. Jr DeRaad, K. A. Milton and W-y Tsai, Classical Electrodynamics (Reading, MA: Perseus) [53] K.-J. Kim and J. D. Jackson, Am. J. Phys. 61, 1144 (1993) [54] L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media 2nd (1984) [55] J. A. Stratton, Electromagnetic Theory (1941) [56] J. E. Marsden and M. J. Hoffman, Basic Complex Analysis 3rd (1999) [57] I. V. Lindell, Am. J. Phys. 61, 39 (1993) [58] D. H. Menzel, Mathematical Physics (1953) [59] C. T. Tai, Dyadic Green Functions in Electromagnetic Theory 2nd (1993) [60] C. T. Tai, Generalized Vector and Dyadic Analysis 2nd (1997) [61] H. Y. Xie, P. T. Leung and D. P. Tsai, J. Math. Phys. 50, 072901 (2009) [62] R. L. Hartman, S. M. Cohen and P. T. Leung, J. Chem. Phys. 110, 2189 (1999) [63] R. L. Hartman, J. Opt. Soc. Am. A 17, 1067 (2000) [64] R. L. Hartman, P. T. Leung and S. M. Cohen, J. Opt. Soc. Am. A 17, 933 (2000) [65] L. W. Li, J. A. Bennett and P. L. Dyson, Int. J. Electron. 70, 803 (1991) [66] L. W. Li, P. S. Kooi, M. S. Leong and T. S. Yeo, IEEE Trans. Microwave Theory Tech. 42, 2302 (1994) [67] L. W. Li, M. S. Leong, P. S. Kooi and T. S. Yeo, IEEE Trans. Microwave Theory Tech. 49, 645 (2001) [68] L. W. Li, X. K. Kang, M. S. Leong, P. S. Kooi and T. S. Yee, IEEE Trans. Microwave Theory Tech. 49, 532 (2001) [69] A. P. Moneda and D. P. Chrissoulidis, J. Opt. Soc. Am. A 24, 1695 (2007) [70] A. P. Moneda and D. P. Chrissoulidis, J. Opt. Soc. Am. A 24, 3437 (2007) [71] C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi and T. S. Yeo, J. Phys. A 40, 5751 (2007) [72] S. C. Hill, G. Videen and J. D. Pendleton, J. Opt. Soc. Am. B 14, 2522 (1997) [73] M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000) [74] E. C. Le Ru and P. G. Etchegoin, Chem. Phys. Letts. 423, 63 (2006) [75] H. Y. Xie, P. T. Leung and D. P. Tsai, Phys. Rev. E (submitted, 2009) [76] R. Fuchs and F. Claro, Phys. Rev. B 35, 3722 (1987) [77] R. Ruppin, Phys. Rev. B 11, 2871 (1975) [78] H. Y. Xie, P. T. Leung and D. P. Tsai, J. Phys. A 42, 045402 (2009) [79] J. A. Porto, R. Carminati and J. J. Greffet, J. Appl. Phys. 88, 4845 (2000) [80] Y. S. Joe, J. F. D. Essiben and E. M. Cooney, J. Phys. D 41, 125503 (2008) [81] R. Vlokh and D. Adamenko, Ukr. J. Phys. Opt. 9, 217 (2008) [82] A. Potts, W. Zhang and D. M. Bagnall, Phys. Rev. A 77, 043816 (2008) [83] O. S. Jenkins and K. L. C. Hunt, J. Chem. Phys. 119, 8250 (2003) [84] J. A. Kong, Proc. IEEE 60, 1036 (1972) [85] H. Y. Xie, P. T. Leung and D. P. Tsai, Phys. Rev. A 78, 064101 (2008) [86] G. Dillon and G. Passatore, Nucl. Phys. A 114, 623 (1968) [87] R. Carminati, Saenz, J. -J. Greffet and M. Nieto-Vesperinas, Phys. Rev. A 62, 012712 (2000) [88] P. J. Wyatt, J. G. Wills and A. E. S. Green, Phys. Rev. 119, 1031 (1960) [89] H. Fiedeldey, S. A. Sofianos, L. J. Allen and R. Lipperheide, Phys. Rev. A 32, 3095 (1985) [90] G. E. Brown and C. T. de Dominicis, Proc. Phys. Soc. 72, 70 (1958) [91] J. Lekner, Theory of reflection of electromagnetic and particle waves (Nijhoff, Dordrecht, 1987) [92] F. Perery and B. Buck, Nucl. Phys. 32, 353 (1962) [93] B. Baseia, Phys. Rev. A 38, 1632 (1988) [94] A. Temkin, Phys. Rev. 107, 1004 (1957) [95] S. R. Singh and A. D. Stauffer, J. Phys. B 7, 782 (1974) [96] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952) [97] J. Gunning and P. Goodman, Acta Cryst. A48, 591 (1992) [98] C. Grosche and F. Steiner, Handbook of Feynman Path Integrals (1998) [99] T. Ueta, J. Phys. Soc. Jpn. 61, 4314 (1992) [100] G. S. Agarwal and S. D. Gupta, Opt. Lett. 27, 1205 (2002) [101] H. Y. Xie, P. T. Leung and D. P. Tsai, Solid State Commun. 149, 625 (2009) [102] V. M. Shalaev, Nature Photonics 1, 41 (2007) [103] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) [104] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, Nature 423, 604 (2003) [105] V. A. Podolskiy and E. E. Narimanov, Phys. Rev. B 71, 201101 (2005) [106] Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003) [107] Smith, P. Kolinko and D. Schurig, J. Opt. Soc. Am. B 21, 1032 (2004) [108] V. V. Klimov, Opt. Comm. 211, 183 (2002) [109] H. T. Dung, S. Y. Buhmann, L. Knoll, D. G. Welsch, S. Scheel and J. Kastel, Phys. Rev. A 68, 043816 (2003) [110] R. Ruppin, J. Chem. Phys. 121, 11358 (2004) [111] J. Kastel and M. Fleischhauer, Phys. Rev. A 71, 011804 (2005) [112] J.-P. Xu, Y.-P. Yang, H. Chen and S.-Y. Zhu, Phys. Rev. A 76, 063813 (2007) [113] S. F. Mahmoud, IEEE Trans. Antennas and Propagation 32, 679 (1984) [114] E. D. Palik, Handbook of Optical Constants of Solids Vol. 2, Academic Press, 1991 [115] C. Oubre and P. Nordlander, J. Phys. Chem. B 108, 17740 (2004) [116] A. Trugler and U. Hohenester, Phys. Rev. B 77, 115403 (2008) [117] W. T. Lu and S. Sridhar, Opt. Express 13, 10673 (2005) [118] H. Y. Xie, H. Y. Chung, P. T. Leung and D. P. Tsai, Phys. Rev. B (submitted, 2009) [119] W. L. Barnes and P. Andrew, Nature 400, 505-506 (1999) [120] D. L. Dexter, J. Chem. Phys. 21, 836 (1953) [121] L. Stryer, Annu. Rev. Biochem. 47, 819 (1978) [122] J. Zhang, Y. Fu and J. R. Lakowicz, J. Phys. Chem. C 111, 50 (2007) [123] P. Andrew and W. L. Barnes, Science 290, 785 (2000) [124] P. Andrew and W. L. Barnes, Science 302, 1002 (2004) [125] J. I. Gersten and A. Nitzan, Chem. Phys. Lett. 104, 31 (1984) [126] J. Malicka, I. Gryczynski, J. Fang, J. Kusba and J. R. Lakowicz, Anal. Biochem. 315, 160 (2003) [127] J. R. Lakowicz, J. Kusba, Y.Shen, J. Malicka, S. D’Auria, Z. Gryczynski and I. Gryczynski, J. Fluoresc. 13, 69 (2003) [128] J. Zhang, Y. Fu, M. H. Chowdhury and J. R. Lokawicz, J. Phys. Chem C 111, 11784 (2007) [129] J. Lindberg, K. Lindfors, T. Setala and M. Kaivola, J. Opt. Soc. Am. A 24, 3427 (2007) [130] A. O. Govorov, J. Lee and N. A. Kotov, Phys. Rev. B 76, 125308 (2007) [131] H. Mertens, A. F. Koenderink and A. Polman, Phys. Rev. B 76, 115123 (2007) [132] W. Ekardt, Phys. Rev. B 32, 1961 (1985) [133] W. Ekardt, Phys. Rev. B 34, 526 (1986) [134] K. Cho, Optical Response of Nanostructures (Springer-Verlag, Berlin, 2003) [135] F. J. G. de Abajo, J. Phys. Chem. C 112, 17983 (2008) [136] S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998) [137] S. L. Westcott, J. B. Jackson, C. Radloff and N. J. Halas, Phys. Rev. B 66, 155431 (2002) [138] E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schartz and J. T. Hupp, J. Phys. Chem. B 108, 1224 (2004) [139] L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas and J. L. West, Ann. Biomed. Eng. 34, 15 (2006) [140] M. Durach, A. Rusina, V. I. Klimov and M. I. Stockman, New J. Phys. 10, 105011 (2008) [141] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis 4th (1927) [142] G. N. Watson, Theory of Bessel Functions (1922) [143] J. M. Vielma, Nonlocal Optical Effects on the Fluorescence and Decay Rates for Admolecules at a Metallic Nanoparticle, MS Thesis, Portland State University (2007) [144] N. K. Grady, N. J. Halas and P. Nordlander, Chem. Phys. Letts. 399, 167 (2004) [145] Z. E. Goude and P. T. Leung, Solid State Commun. 143, 416 (2007) [146] A. T. George, Opt. Commun. 188, 321 (2001) [147] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller and D. I. Gittins, Phys. Rev. Lett. 89, 203002 (2002) [148] E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muoz Javier and W. J. Parak, Nano Lett. 5, 585 (2005) [149] X. W. Chen, W. C. Choy, Sailing. He and P. C. Chui, Opt. Express 15, 7083 (2007) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41363 | - |
| dc.description.abstract | 在這篇論文裡,首先用格林函數方法去描述光學和量子力學的倒易性質,並發現在電充係數和磁透係數皆滿足對稱條件的時候,光學倒易性質是成立的;而在量子力學裡也有相同的電位對稱條件,並同時觀察到若電子在有磁場的環境下運動,倒易性質會被破壞。另外,我們亦提供平面波的方法去解釋光學和量子力學的倒易性質。最後我們進一步應用格林函數方法去處理在近場光學裡的問題,並考慮源為電雙極的型式,且討論兩種不同的系統。首先考慮一個電雙極在近兩種不同的超穎物質,分別為在一個介質裡加了奈米金屬棒陣列、一個金屬層和一個介質層所交錯構成的多層結構。對於前者,我們發現分子的生命期在介質裡負折射發生的時候會變的很小和分子的發射頻譜會有很大的藍移現象;對於後者,我們可以發現類似於前者的物理現象,且在文獻中較少被注意;這些重要的特徵提供我們用表面螢光的實驗去觀測到不同於一般的光學性質。再來考慮兩個分子在近金屬奈米球殼之間的能量轉移率,並且考慮非定域效應。而這兩個分子分佈情形為:兩個分子在球殼外、兩個分子在球殼內和一個分子在球殼內但另一個分子在球殼外。因為在奈米金屬球殼上的自由電子的集體震動行為,也就是表面電漿效應;金屬的非定域效應;施體分子的發射頻率等等,分子間的螢光共振能量轉移增強的倍率會有一些有趣的變化。數值結果顯示,分子間螢光共振能量轉移增強的倍率會達到共振主要是因為多極鍵結和反鍵結的金屬奈米球殼的耦合電漿模態;在低頻時,金屬的非定域效應會減弱分子間的螢光共振能量轉移增強的倍率並且會有藍移的現象,利用很小尺寸的金屬粒子,我們可以發現這些訊息在分子之間的螢光共振能量轉移增強效應上是很有用的。 | zh_TW |
| dc.description.abstract | In this thesis, first we use the Green function methods to describe the optical reciprocity and extend to quantum-mechanical reciprocity. We find that optical reciprocity is valid under the condition when both the permittivity and permeability tensors are symmetric and a similar condition in quantum mechanics with the potential replacing the roles of both permittivity and permeability tensors. We also observe reciprocity to break down in the system with an electron moving in a magnetic field. In addition, we use plane wave method to describe the reciprocal symmetry in both optics and quantum mechanics. Finally, we apply the Green function method to near field optics involving dipolar sources. We have studied two different systems. One problem has the dipole near two kinds of metamaterials. For the first kind which consists of a composite of metallic nanowires and a dielectric host, the results show that the molecular lifetimes become exceedingly short when negative refraction occurs within the medium, and large blue-shifts can occur for the emission frequencies of the admolecues. For the stratified layered system, abrupt changes in both the emission lifetimes and frequencies can also take place upon negative refraction, although to a much less extent. These abrupt changes thus provide signatures for probing the transition to such unusual optical property for the medium via surface-fluorescence experiments. The other problem deals with the energy transfer between two dipoles near a metallic nanoshell with nonlocal dielectric response. Two molecules can be located both outside, both inside, or one inside and one outside the shell. Particular focus will be on the enhancement of the fluorescence resonance energy transfer (FRET) process due mainly to the surface plasmon excitation of the free metallic electrons, and the nonlocal effects on this will be studied with reference to a number of factors including the molecular locations and orientations, the emission frequency of the donor, etc. Numerical results show that the resonances in the enhanced FRET rate will be dominated by the multipolar bonding and antibonding cross-coupled plasmonic modes of the nanoshell; and that the nonlocal effects will generally lead to blue-shifted resonances, as well as diminution of the enhancement for the low-frequency portions of both modes. Such information will be useful for future application of plasmonic enhanced FRET using metallic particles of ultrasmall sizes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:16:49Z (GMT). No. of bitstreams: 1 ntu-98-F95222052-1.pdf: 733891 bytes, checksum: d124b35453ead34373fb53d85591b50a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 1 Introduction 1
1-1 Theory of surface plasmons 1 1-1-1 Volume plasmon resonance 2 1-1-2 Surface plasmon resonance 3 1-1-3 Localized surface plasmon resonance 5 1-2 Introduction to metamaterial 7 1-3 Introduction to nonlocal effect 10 2 Motivation 12 3 Green function method in electrodynamics 17 3-1 Scalar Green function 17 3-1-1 Integration formulas for scalar 18 3-1-2 Introduction to scalar Green function in electrostatics 20 3-2 Dyadic Green function 22 3-2-1 Introduction to dyad 22 3-2-2 Integration formulas for dyad 23 3-2-3 Introduction to dyadic Green function in electrodynamics 25 3-3 Summary 27 4 Reciprocity in optics and other wave propagation 29 4-1 Reciprocity in optics 29 4-1-1 Long wavelength approximation---electrostatics method 30 4-1-2 Case of electrodynamics 38 4-1-3 Discussion and summary 46 4-2 Reciprocity in quantum mechanics 49 4-2-1 Theoretical formulation 50 4-2-2 Some applications 52 4-2-3 Summary 58 4-3 Constraints on the reflection coefficient in optics and quantum mechanics 59 4-4 Summary 63 Appendix 63 5 Application to interaction with localized source 65 5-1 Molecular decay rates and emission frequencies in the vicinity of an anisotropic metamaterial 65 5-1-1 Theoretical formulation 67 5-1-2 Numerical results and discussion 71 5-1-3 Discussion and summary 78 5-2 Plasmonic enhancement of Förster energy transfer at a metallic nanoparticle: nonlocal optical effect 79 5-2-1 Theoretical formulation 85 5-2-2 Numerical results and discussion 93 5-2-3 Discussion and summary 103 5-3 Summary 104 Appexdix A 105 Appexdix B 107 6 Conclusions and further prospects 110 Bibliography 114 Useful formulas 120 | |
| dc.language.iso | en | |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | 格林函數 | zh_TW |
| dc.subject | 超穎物質 | zh_TW |
| dc.subject | 非定域效應 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 倒易性質 | zh_TW |
| dc.subject | 負折射 | zh_TW |
| dc.subject | fluorescence resonance energy transfer (FRET) | en |
| dc.subject | surface plasmon | en |
| dc.subject | metamaterial | en |
| dc.subject | nonlocal effec | en |
| dc.subject | Green function | en |
| dc.subject | reciprocity | en |
| dc.subject | negative refraction | en |
| dc.title | 光學倒易對稱性和存在於電漿子與超穎物質之侷部源的交互作用之研究 | zh_TW |
| dc.title | Study of optical reciprocal symmetry and interaction with localized source in the presence of plasmonic and meta-materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 梁培德(Pui-Tak Leung),張亞中(Yia-Chung Chang),張瑞麟(Ruei-Lin Chang),郭光宇(Guang-Yu Guo),龐寧寧(Ning-Ning Pang),張宏鈞(Hung-Chun Chang),林清富(Ching-Fuh Lin) | |
| dc.subject.keyword | 表面電漿,超穎物質,非定域效應,格林函數,倒易性質,負折射,螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | surface plasmon,metamaterial,nonlocal effec,Green function,reciprocity,negative refraction,fluorescence resonance energy transfer (FRET), | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-05-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 716.69 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
