Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維(Nan-Wei Su)
dc.contributor.authorJi-Yuan Huangen
dc.contributor.author黃積淵zh_TW
dc.date.accessioned2021-06-15T00:16:14Z-
dc.date.available2009-06-09
dc.date.copyright2009-06-09
dc.date.issued2009
dc.date.submitted2009-06-06
dc.identifier.citation蘇遠志,1999,應用微生物學,華香園出版社。
田蔚城,1996,生物技術,九州圖書文物有限公司。
王誌宏, 2001,1,3-二脂肪酸甘油酯之製備方法之研究,國立台灣大學農業化學研究所碩士論文。
李敏雄、鍾玉明,1993,以酵素法生產單甘油酯,食品工業,25(6):10-18。
歐錦綢,1998,食品乳化劑的特性、組成、生產及在麵包製造上的應用,食品工業,14:18-25。
李宜穎,1995,Serratia liquefaciens A-21脂解酶之純化及特性探討,國立中興大學食品科學研究所碩士論文。
謝俊隆,1988,生物轉化法簡介,化學工業資訊月刊,3:2-10。
賴永光,1995,乳化劑第16食品添加劑,食品資訊,2:46-55。
翟中和、王喜忠、丁明孝,2001,細胞分子生物學,九州圖書文物有限公司。
楊永慶,2002,酵素催化酯化反應合成單硬脂酸甘油酯,國立台灣科技大學化學工程研究所碩士論文。
Akeda, Y., Shibata, K., Ping, X., Tanaka, T. and Taniguchi, M. 1994. AKD-2a,b,c and d, new antibiotics from Streptomyces sp. Ocu-42815 taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiotics. 48:363-368.
Akoh, C.C. 1995. Structured lipids-enzymatic approach. INFORM. 6:1055-1061.
Akoh, C.C. and Huang, K.H. 1995. Enzymatic synthesis of structured lipids:Transesterification of triolein and caprylic acid. J. Food Lipids. 2:219-230.
Akoh, C.C., Cooper, C. and Nwosu, C.V. 1992. Lipase G-catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. JAOCS. 69:257-260.
Antonian, E. 1988. Recent advances in the purification, characterization and structure determination of lipases. LIPIDS 23:1101-1106.
Barbaro, S.E., Trevors, J.T. and Inniss, W.E. 2001. Effects of low temperature, cold shock, and various carbon sources on esterase and lipase activities and exopolysacchride production by a psychrotrophic Acinetobacter sp. Can. J. Microbiol. 47:194-205.
Barber, A.J. 1988. Evening primrose oil: A panacea ? Pharmaceut. J. 240:723-725.
Berger, M. and Schneider, M.P. 1993. Regioisomerically pure mono- and diacylglycerols as synthetic building blocks. Fat Sci. Technol. 95:169-175.
Bradoo, S., Saxena, R.K. and Gupta, R. 1999. Two acidothermotolerant lipases from new variants of Bacillus spp. World J. Microbiol. Biotechnol. 15:87-91.
Bornscheuer, U.T. 1995. Lipase-catalyzed synthesis of monoacylglycerols. Enzyme Microb. Technol. 17:578-586.
Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L. and Menge, U. 1990. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343:747-770.
Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Jensen, B.H., Patkar, S.A. and Thim, L. 1991. A model for interfacial activation in lipase from the structure of a fungal lipase-inhibitor complex, Nature 51:491-495.
Bugnariu, S. 1996. Beneficial effect of gamma-linolenic acid enriched diet therapeutic properties of oenothera biennis (evening primrose oil). Farmicia. 44:3-4.
Chahinian, H., Vanot, G., Ibrik, A., Rugani, N., Sarda, L., and Comeau, L.C. 2000. Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipase. Biosci. Biotechnol. Biochem. 64:215-222
Chapus, C., Semeriva, M., Bovier-Lapierre, C. and Desnuelle, P. 1976. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry. 15:4980-4987.
Chen, J., Ishii, T., Shimura, S., Kirimura, K. and Usami, S. 1992. Lipase production by Trichosporon fermentans WU-C12, a newly isolated yeast. J. Ferment. Bioeng. 73:412-414.
Choi, Y.J. and Lee, B.H. 2001. Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioprocess Biosys. Eng. 24:59-63.
Corzo, G. and Revah, S. 1999. Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresource Technol. 70:173-180.
Chapus, C. and Semeriva, M. 1976. Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipase. Biochem. 15:4988-4991.
Dalmau, E., Montesinos, J.L., Lotti, M. and Casas, C. 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Technol. 26:657-663.
Deive, F.J., Costas, M. and Longo, M.A. 2003. Froduction of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnol. Lett. 25:1403-1406.
Derewenda, Z.S. and Derewenda, U. 1991. Relationships among serine hydrolase:evidence for a common structural motif in triacylglyceride lipases and esterases. Biochem. Cell Biol. 69:842-851.
Derewenda, U., Brzozowski, A.M., Lanson, D.M. and Derewenda, Z.S. 1992. Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532-1541.
Derewenda, Z.S. and Sharp, A.M. 1993. News from the interface: the molecular structure of triacylglyceride lipases. TIBS. 18:20-25.
Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G.T., Luchai, S. 1998. Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J. Gen. Appl. Microbiol. 44:139-145.
Dunn M.T. 1983. Paecilomyces nostocoides, a new hyphomycete isolated from cysts of Heterodera zeae. Mycologia 75:179-182.
Espinosa, E., Sanchez, S. and Farres, A. 1990. Nutritional factors affecting lipase production by Rhizopus delemar CDBB H313. Biotrchnol. Lett. 12:209-214.
Ghosh, P.K., Saxena, R.K., Gupta, R., Yadav, R.P. and Davidson, W.S. 1996. Microbial lipases:production and applications. Sci. Prog. 79:119-157.
Gilbert, E.J., Drozd, J.W. and Jones, C.W. 1991. Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J. Gen. Microbiol. 137:2215-2221.
Gill, I. and Valivety, R. 1997. Polyunsaturated fatty acids, part 2:Biotransformations and biotechnological applications. Trends Biotechnol. 15:470-478.
Gordillo, M.A., Obradors, N., Montesinos, J.L., Valero, F., Lafuente, J. and Sola, C. 1995. Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa. Appl. Microbiol. Biotechnol. 43:38-41.
Gupta, R., Gupta, N. and Rathi, P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64:763-781.
.
Hong, M.C. and Chang, M.C. 1998. Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol. Lett. 20:1027-1029.
Imamura, S. and Kitaura, S. 2000. Purification and characterization of a monoacylglycerol lipase from the moderately thermophilic Bacillus sp. H-257. J. Biochem. 127:419-425.
Iwai, M. and Tsujisaka, Y. Fungal lipase. In: Borgström, B., Brockman, H.L. editot. Lipases. Amsterdam: Elsevier Science Publishers. 1984. p.443-69.
Jantti, J., Seppala, E.,Vapaatalo, H. and Isomaki, H. 1989. Evening primrose oil and olive oil in treatment of rheumatoid arthritis. Clin. Rheumatol. 8:238-244.
Kambourova, M., Kirilova, N., Mandeva, R. and Derekova. 2003. A Purification and properties of thermostable lipase from a thermophilic Bacillus stearothermo-philus MC 7. J. Mol. Catal.-B Enzyme. 22:307-313.
Kang, J.C. Liang, Z.Q., Liu, A.Y. and Kong, R.Y.C. 2000. Molecular evidence of polymorphism in Cordyceps based on 5.8S rDNA and ITS2 sequences. Mycosystema. 19:492-497.
Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S.S. and Gupta, R. 2005. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Express. Purifi. 41:38-44.
Kugimiya, W., Otani, Y., Hashimoto, Y. and Takagi, T. 1986. Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem. Biophys. Res. Comm. 141, 185-190.
Laane, C., Boneren, S., Vos, K. and Veeger, C. 1987. Rules for optimizations of biocatalysis in organic solvents. Biotechnol. Bioeng. 30:81-87.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Lawson, L.D. and Hughes, B.G. 1988. Human absorption of fish oil fatty acids as triglycerides,free acids,ethyl esters. Biochem. Biophy. Commu. 152:328-355.
Lee, C.Y. and Iandolo, J.J. 1986. Lysogenic conversion of Staphylococcus lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166, 385-391.
Liao, D.I., Breddam, K., Sweet, R.M., Bullock, T. and Remington, S.J. 1992. Refined atomic model of wheat serine carboxypeptidase Ⅱat 2.2Å resolution. Biochemistry. 31:9796-9812.
Li, H. and Zhang, X. 2005. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr. Purifi. 42, 153-159.
Lin, S.F., Chiou, C.M. and Tsai, Y.C. 1995. Effect of Triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol. Lett. 17:959-962.
Lotti, M., Monticelli, S., Montesinos, J.L., Brocca, S., Valero, F. and Lafuente, J. 1998. Physiological control on the expression and secretion of Candida rugosa lipase. Chem. Phys. Lipids. 93:143-148.
Mahler, G.F., Kok, R.G., Cordenons, A., Hellingwerf, K.J. and Nudel, B.C. 2000. Effects of carbon sources on extracellular lipase production and lipA transcription in Acinetobacter calcoaceticus. J. Ind. Microbiol. Biotechnol. 24:25-30.
Mc Neill, G. P. and Yamane, T. 1991. Furither improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oil. JAOCS. 68: 6-10.
Meghwanshi, G.K., Agarwal, L., Dutt, K. and Saxena, R.K. 2006. Characterization of 1,3-regiospecific lipases from new Pseudomonas and Bacillus isolates. J. Mole. Catal. B: Enzym. 40:127-131.
Misset, O. 1994. The structure-function relationship of the lipase from Pseudomonas aerugosa and Bacillus subtilis. Prot. End. 7:523-529.
Namboodiri, V. M. H. and Chattopadhyaya, R. 2000. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids. 35:495-502.
Nascimento, A.E. and Campos-Tataki, G.M. 1994. Effect of sodium dodecyl sulfate on lipase of Candida lipolytica. Appl. Biochem. Biotechnol. 49:93-99.
Noble, M.E.W., Cleasby, A., Johnson, L.N., Egmond, M.R. and Frenken, L.G.J. 1993. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveal a partially redundant catalytic aspartate. FEBS 331:123-128.
Ochoa, L. D. C., Gomez, C. R., Alfaro, G. V. and Ros, R. O. 2005. Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb. Technol. 37:648-654.
Okada, G., Sakai, N. and Yamagishi, M. 1995. Acremonium-like submerged conidiation in Paecilomyces nostocoides and P. lilacinus. Mycoscience 36:345-351.
Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S.J., Silman, I., Schrag, J.M., Sussman, J.L., Verschueren, K.H.C. and Goldman, A. 1992. The α/β hydrolase fold. Protein Eng. 5:197-211.
Omura, S.,Nakagawa, A.,Fukamachi, N., Otoguro, K. and Kobayashi, B. 1986. Aggreceride,a new platelet aggregation inhibitor from Stretomyces sp. J. Antibiotics. 39:1180-1181.
Paparaskevas, D., Christakopoulos, P., Kekos, D. and Macris, B.J. 1992. Optimizing production of extracellular lipase from Rhodotorula glutinis. Biotechnol. Lett. 14:397-402.
Pignede, G., Wang, H., Fudalej, F., Gaillardin, C., Seman, M. and Nicaud, J.M. 2000. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 182:2802-2810.
Ping, X,, Akeda, Y., Fujita, K.I., Tanaka, T. and Taniguchi, M. 1998. The model of action of akd-2c, and antifungal antibiotic from Streptomyces sp. ocu-42815. J. Antibiotics.51:852-856.
Polgar, L. 1992. Structure relationship between lipases and peptidases of the prolyl oligopeptidase family. FEBS. 311:281-284.
Rathi, P., Saxena, R.K. and Gupta, R. 2001. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37:187-192.
Ray, S. and Bhattacharyya, D.K. 1995. Comparative nutritional study of enzymatically and chemically interesterified palm oil products. J. Am. Oil Chem. Soc. 72:327-330.
Rubin, B. 1994. Grease pit chemistry exposed. Nature Structural Biology. 1:568-572.
Sakiyama, T., Yoshimi, T., Miyake, A., Umeoka, M ., Tanaka, A., Ozaki, S. and Nakanishp, K. 2001. Purification and characterization of a monoacylglycerol lipase from Pseudomonas sp. LP7315. J. Biosci. Bioeng. 91:27-32.
Samson, R.A. 1974. Paecilomyces and some allied Hyphomycetes. Stud. Mycol. 6:1-119.
Sarda, L. and Desnuelle, P. 1958. Actions of pancreatic lipase on esters in emulsions. Biochim. Biophys. Acta. 30:513-521.
Savita, J. and Ratledge, C. 1998. An inducible, intracellular, alkalophilic lipase in Aspergillus flavpes grown on triacylglycerols. World. J. Microbiol. Biotechnol. 8:129-131.
Schmid, R.D. and Verger, R. 1998. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. ed. 37:1608-1633.
Schrag, J.D., Li, Y., Wu, S. and Cygler, M. 1991. Ser-His-Glu triad forms the catalytic site of lipase from Geotrichum candudum. Nature. 351:761-764.
Scott,J. 1989. Fish and evening primrose oils:gaining medical recognition. Curr. Theraput. 45-46.
Seino, H. and Uchibori, T. 1984. Enzymatic synthesis of carbohydrate esters of fatty acid (1) esterification of sucrose,glucose,fructose and sorbitol. JAOCS. 61(11):1761-1765.
Shaw, J.F. and Lo, S. 1994. Production of propylene glycol fatty acid monoesters by lipase-catalyzed reactions in organic solvent. JAOCS. 71(7):715-719.
Shirazi, S.H., Rehman, S.R. and Rehman, M.M. 1998. Short communication: production of extracellular lipases by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 14:595-597.
Sugihara, A., Tani, T. and Tominaga, T. 1991. Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109:211-216.
Sugiura, M. Bacterial lipases. In: Borgström, B., Brockman, H.L. editot. Lipases. Amsterdam: Elsevier Science Publishers. 1984. p.505-523.
Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. 1991. Atomic structure of acetylcholinesterase from Torpedo califor-nica: a prototypic acetylcholine-binding protein. Science. 253:872-879.
Sztajer, H. and Maliszewska, I. 1988. The effect of culture conditions on lipolytic productivity of microorganisms. 10:199-204.
Tripathi, V., Trivedi, R. and Singh, R.P. 2006. Lipase-catalyzed synthesis of diacylglycerol and monoacylglycerol from unsaturated fatty acid in organic solvent system. J. Oleo Sci. 55:65-69.
Tsujisaka, Y., Iwai, M., Fukumoto, J. and Okamoto, Y. 1973. Induced formation of lipase by Geotrichum candidum Link, Agr. Biol. Chem. 37:837-842.
Villeneuve, P. and Foglia, T.A. 1997. Lipase specificities:potential application in lipid bioconversions. INFORM 8:640-650.
Vladea, R., Stefanut, M., Cojocariu, L. and Huma, L. 1997. Monoglycerides and diglycerides used in the food industry. General Review CA section:17 123:54394.
Warshel, A., Naray-Szabo, G., Sussman, F. and Hwang, J.K. 1989. How do serine proteases really work?Biochemistry 28:3629-3637.
White, T.J., Bruns, T.D., Lee, S.B. and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315-322.
Winkler, F.K., D’Arcy, A. and Hunziker, W. 1990. Structure of human pancreatic lipase. Nature 343, 771-774.
Yamaguchi, S and Mase, T. 1991. Purification and characterization of mono- and diacylglycerol lipase isolated from Penicillium camembertii U-150. Appl. Microbiol. Biotechnol. 34:720-725.
Yokoyama, E., Yamagishi, K., and Hara, A. 2004. Development of a PCR-based mating-type assay for Clavicipitaceae. FEMS Microbiol. Lett. 237:205–212.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41341-
dc.description.abstract本研究自金門土壤中篩得一株具有基質特異性的脂解酶生產菌 Paecilomyces nostocoides NTU-FC-LP01 (BCRC 34144)。此菌株具有生產單、雙酸甘油酯脂解酶之能力。其最適生產條件為:以 500 mL 錐形瓶盛裝 100 mL 含有 1 %大豆粉、0.5%單硬酯酸甘油酯、0.5%黃豆蛋白水解物、0.1%酵母抽出物、0.5%磷酸氫二鉀、0.5%硫酸銨、0.05%硫酸鎂、0.1%聚乙烯醇,於 27℃下、以120 rpm 培養 60 小時,可得高的脂解酶活性 ( 76 U/mL)。將上述培養所獲得之培養液,經超過濾濃縮 (MWCO: 10kD),丙酮沈澱區分、CMC 陽離子交換層析,可以得到比活性為 57 U/mg protein 的脂解酶,其純化倍數約為 56 倍,而回收率約為 4.3 %。以 SDS-PAGE 測得此純化酵素之分子量為 31 kDa。酵素性質分析結果顯示,此酵素屬於鹼性脂解酶,最適反應溫度及 pH 分別為40℃及10.0。在基質特異性方面,此純化之脂解酶只能水解單、雙酸甘油酯,無法水解三油酸甘油酯、橄欖油和大豆油等三酸甘油酯,其水解活性依單、雙酸甘油酯類型而異,依次為單油酸甘油酯、單硬酯酸甘油酯及雙油酸甘油酯。此外,本研究直接以 P. nostocoides NTU-FC-LP01 細胞進行催化酯化反應,可以合成單油酸甘油酯,當提升反應溫度至 60℃,細胞催化反應的專一性可以進一步提高。zh_TW
dc.description.abstractIn this study, a fungus strain was isolated from the soil in the Kinmen area of R.O.C., which could hydrolyze mono- and diacylglycerol but not triacylglycerol. This strain was tentatively identified as Paecilomyces nostocoides, and designated as P. nostocoides NTU-FC-LP01(BCRC 34144). The optimal cultural conditions of P. nostocoides NTU-FC-LP01 for the production of lipase were established, for which the culture to be shaken at 27℃ with 120 rpm for 60 hours in 500 mL flask containing 100 mL of medium consisting of 1.0 % soybean meal, 0.5% monostearin, 0.5% soytone, 0.1% yeast extract, 0.5% K2HPO4, 0.5% (NH4)2SO4, 0.05% MgSO4.7H2O and 0.1% polyvinyl alcohol. The most lipase activity of 76 U/mL was obtained. The crude lipase was purified with ultrafiltration, acetone fractionation, and carboxy methyl cellulose cation exchange column chromatography. A 56-fold purified lipase was obtained with 57 U/mg of specific activity and 4.3% of recovery. The molecular weight of the enzyme was 31 kDa (by SDS-PAGE) and classified as an alkaline lipase. The optimal temperature and pH for the lipase activity were 40℃and pH 10, respectively. The purified enzyme could not hydrolyze triglycerides (i.e. triolein, olive oil and soybeam oil), but it showed hydrolytic activity against mono- and diacylglycerol (diglycerides). Those of hydrolytic activity depended on the type of glycerides, such as monoolein, monostearin and diolein in that order. In addition, P. nostocoides NTU-FC-LP01 cells were able to directly catalyze esterification for the production of monoolein.When the reaction temperature was raised to 60℃, the reaction specificity of the cells was increased.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:16:14Z (GMT). No. of bitstreams: 1
ntu-98-D88623503-1.pdf: 2604782 bytes, checksum: 66fd02b249668eaf663f434c166e5dbf (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章、研究動機 1
第二章、文獻整理 3
實驗設計大綱: 28
第三章、材料與方法 29
第四章、結果與討論 56
第五章、結論 104
第六章、參考文獻 106
圖目錄
圖 2-1. 脂解酶常見的α/β摺疊形式 8
圖 2-2. β-ε Ser-α motif結構的概要圖 9
圖 2-3. 胰臟脂解酶對三乙酸酯的水解反應 12
圖 2-4. 脂解酶可能經由形成穩定醯酶中間產物的醯化和去醯化反應 12
圖 2-5. 脂解酶催化主要油脂修飾的反應 14
圖 2-6. 以脂解酶催化合成1(3)-單酸甘油酯 15
圖 2-7. 脂解酶活性和log P值之關係 16
圖 2-8. P. nostocoides Dunn 之光學顯微照相圖 26
圖 4-1. No. 8-2 以平面培養在基礎培養基上之情形 57
圖 4-2. No. 8-2 的菌落外觀和顯微照相圖 59
圖 4-3. No. 8-2 的 18S rDNA 基因序列 61
圖4-4. P. nostocoides NTU-FC-LP01 培養在基礎培養基中之分散性變化 62
圖 4-5. P. nostocoides NTU-FC-LP01 培養在基礎培養基中之 pH變化 63
圖 4-6. 油酯種類對酵素生產之影響 68
圖 4-7. 單硬脂酸甘油酯添加量對酵素生產之影響 69
圖 4-8. 界面活性劑對酵素生產之影響 70
圖 4-9. Triton X-100 添加量對酵素生產之影響 71
圖4-10 聚乙烯醇濃度對脂解酶生產之影響 78
圖 4-11 反應溫度對P. nostocoides NTU-FC-LP01粗脂解酶活性之影響 80
圖 4-12 P. nostocoides NTU-FC-LP01粗脂解酶之溫度安定性 81
圖 4-13 pH 對P. nostocoides NTU-FC-LP01粗脂解酶活性之影響 82
圖 4-14 P. nostocoides NTU-FC-LP01粗脂解酶之 pH 安定性 83
圖 4-15以丙酮沈澱法區分脂解酶 85
圖 4-16 脂解酶於CMC陽離子交換管柱之層析圖 86
圖 4-17 脂解酶經不同純化步驟後在 SDS-PAGE 上的 CBR 染色圖 89
圖 4-18 以 SDS-PAGE 決定P. nostocoides 脂解酶次單元之分子量 90
圖 4-19 P. nostocoides NTU-FC-LP01 脂解酶 P-Ⅱ之等電焦集電泳結果 91
圖 4-20 溫度對P. nostocoides NTU-FC-LP01脂解酶P-Ⅱ反應活性和熱安定性之影響 93
圖 4-21 pH對P. nostocoides NTU-FC-LP01 脂解酶 P-Ⅱ反應活性和安定性之影響 95
圖 4-22 各酯類被P. nostocoides NTU-FC-LP01 脂解酶 P-Ⅱ水解的相對活性 96
圖 4-23 以脂解酶 P-Ⅱ 於 30℃下催化水解各酯類 30 分鐘後的 TLC 分析 97
圖 4-24 P. nostocoides NTU-FC-LP01 的乾粉 101
圖 4-25 油酸之 TLC-FID 層析圖譜 101
圖 4-26 市售單油酸甘油酯之 TLC-FID 層析圖譜 102
圖 4-27 脂解酶在 40℃下合成單油酸甘油酯之 TLC-FID 層析圖譜 102
圖 4-28 脂解酶在 60℃下合成單油酸甘油酯之 TLC-FID 層析圖譜 103

表目錄
表2-1一些市售重要的脂解酶 4
表2-2脂解酶的分類和來源 5
表2-3 常用有機溶劑的log P值 17
表2-4 單酸甘油酯的用途 20
表2-5含 PUFA 產品之應用 21
表2-6 以脂解酶催化酯化反應合成單酸甘油酯 23
表2-7 以酯化反應選擇性合成單酸甘油酯的方法 24
表4-1 菌株篩選的結果 56
表4-2不同誘導物(0.5%)對脂解酶生產之影響 72
表4-3 油酸添加量對脂解酶生產之影響 73
表4-4 天然培養基對脂解酶生產之影響 74
表4-5 黃豆粉對脂解酶生產之影響 75
表4-6 黃豆粉和誘導物對脂解酶生產之影響 76
表4-7 界面活性劑 (0.1%) 對脂解酶生產之影響 77
表4-8 P. nostocoides NTU-FC-LP01 脂解酶之純化表 87
表4-9脂解酶之純化方法和一些特性 98
表4-10 金屬鹽類和試劑對 P. nostocoides NTU-FC-LP01 脂解酶 P-Ⅱ活性之影響 100
dc.language.isozh-TW
dc.subject單酸甘油酯zh_TW
dc.subjectPaecilomyces nostocoideszh_TW
dc.subject基質特異性zh_TW
dc.subject脂解&#37238zh_TW
dc.subject純化zh_TW
dc.subjectpurificationen
dc.subjectmonoacylglycerolsen
dc.subjectsubstrate specificityen
dc.subjectlipaseen
dc.subjectPaecilomyces nostocoidesen
dc.title以Paecilomyces nostocoides生產脂解酶之研究及其應用zh_TW
dc.titleStudies on the production and application of lipase from Paecilomyces nostocoides NTU-FC-LP01en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.coadvisor李敏雄(Min-Hsiung Lee)
dc.contributor.oralexamcommittee黃健雄(Jan-Hsiung Huang),陳錦樹(Chinshuh Chen),王苑春(Yuan-Chuen Wang),劉麗雲(Li-Yun Liu),翁順祥(Shun-Hsiang Weng)
dc.subject.keywordPaecilomyces nostocoides,脂解&#37238,純化,基質特異性,單酸甘油酯,zh_TW
dc.subject.keywordPaecilomyces nostocoides,lipase,purification,substrate specificity,monoacylglycerols,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2009-06-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved