Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張英?
dc.contributor.authorShiuan-Jeng Laien
dc.contributor.author賴軒正zh_TW
dc.date.accessioned2021-06-15T00:15:46Z-
dc.date.available2011-08-21
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citationAitken, A. (2006). 14-3-3 proteins: A historic overview. Semin Cancer Biol 16: 162-172.
Arnold, T.M., and Schultz, J.C. (2002). Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130: 585-593.
Balibrea, M.E., Cuartero, J., Bolarin, M.C., and Perez-Alfocea, F. (2003). Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiol Plant 118: 38-46.
Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., and Smith, A.M. (2009). Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci U S A 106: 13124-13129.
Baumert, A., Mock, H.P., Schmidt, J., Herbers, K., Sonnewald, U., and Strack, D. (2001). Patterns of phenylpropanoids in non-inoculated and potato virus Y-inoculated leaves of transgenic tobacco plants expressing yeast-derived invertase. Phytochemistry 56: 535-541.
Blee, K.A., and Anderson, A.J. (2002). Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50: 197-211.
Bournay, A.S., Hedley, P.E., Maddison, A., Waugh, R., and Machray, G.C. (1996). Exon skipping induced by cold stress in a potato invertase gene transcript. Nucleic Acids Res 24: 2347-2351.
Bridges, D., and Moorhead, G.B. (2005). 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005: re10.

Bunney, T.D., van Walraven, H.S., and de Boer, A.H. (2001). 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. P Natl Acad Sci USA 98: 4249-4254.
Bunney, T.D., van den Wijngaard, P.W., and de Boer, A.H. (2002). 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol Biol 50: 1041-1051.
Camoni, L., Harper, J.F., and Palmgren, M.G. (1998). 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). Febs Letters 430: 381-384.
Chang, I.F., Curran, A., Woolsey, R., Quilici, D., Cushman, J.C., Mittler, R., Harmon, A., and Harper, J.F. (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9: 2967-2985.
Cheng, W.H., Taliercio, E.W., and Chourey, P.S. (1999). Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3 ' untranslated region in a cell suspension culture of maize. P Natl Acad Sci USA 96: 10512-10517.
Chiang, C.W., Harris, G., Ellig, C., Masters, S.C., Subramanian, R., Shenolikar, S., Wadzinski, B.E., and Yang, E. (2001). Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97: 1289-1297.
Chopra, J., Kaur, N., and Gupta, A.K. (2003). Changes in sugar content and activities of sucrose metabolizing enzymes in roots and nodules of lentil. Biol Plantarum 46: 89-93.
Chung, C.T., Niemela, S.L., and Miller, R.H. (1989). One-Step Preparation of Competent Escherichia-Coli - Transformation and Storage of Bacterial-Cells in the Same Solution. P Natl Acad Sci USA 86: 2172-2175.
Cotelle, V., Meek, S.E.M., Provan, F., Milne, F.C., Morrice, N., and MacKintosh, C. (2000). 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. Embo J 19: 2869-2876.

Datta, R., Chamusco, K.C., and Chourey, P.S. (2002). Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130: 1645-1656.
de Boer, A.H. (2002). Plant 14-3-3 proteins assist ion channels and pumps. Biochem Soc T 30: 416-421.
DeLille, J.M., Sehnke, P.C., and Ferl, R.J. (2001). The arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 126: 35-38.
Dorion, S., Lalonde, S., and Saini, H.S. (1996). Induction of Male Sterility in Wheat by Meiotic-Stage Water Deficit Is Preceded by a Decline in Invertase Activity and Changes in Carbohydrate Metabolism in Anthers. Plant Physiol 111: 137-145.
Eckardt, N.A. (2001). Transcription factors dial 14-3-3 for nuclear shuttle. Plant Cell 13: 2385-2389.
Finkelstein, R.R., Gampala, S.S.L., and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-S45.
Fu, H.A., Subramanian, R.R., and Masters, S.C. (2000). 14-3-3 proteins: Structure, function, and regulation. Annu Rev Pharmacol 40: 617-647.
Fukushima, E., Arata, Y., Endo, T., Sonnewald, U., and Sato, F. (2001). Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol 42: 245-249.
Greiner, S., Krausgrill, S., and Rausch, T. (1998). Cloning of a tobacco apoplasmic invertase inhibitor - Proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol 116: 733-742.
Harper, J.F., Chang, I.F., Curran, A., Woolsey, R., Quilici, D., Cushman, J.C., Mittler, R., and Harmon, A. (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9: 2967-2985.

Hashimoto, T., Shoji, T., Suzuki, K., Abe, T., Kaneko, Y., Shi, H.Z., Zhu, J.K., Rus, A., and Hasegawa, P.M. (2006). Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47: 1158-1168.
Hermeking, H., and Benzinger, A. (2006). 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 16: 183-192.
Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666-680.
Huber, S.C., MacKintosh, C., and Kaiser, W.M. (2002). Metabolic enzymes as targets for 14-3-3 proteins. Plant Molecular Biology 50: 1053-1063.
Jones, D.H., Ley, S., and Aitken, A. (1995). Isoforms of 14-3-3-Protein Can Form Homodimers and Heterodimers in-Vivo and in-Vitro - Implications for Function as Adapter Proteins. Febs Letters 368: 55-58.
Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7: 235-246.
Kuhn, C., and Grof, C.P. (2010). Sucrose transporters of higher plants. Curr Opin Plant Biol 13: 288-298.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Lee, H.S., and Sturm, A. (1996). Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol 112: 1513-1522.
Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397: 172-175.
Mahajan, S., and Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444: 139-158.
Man, H.M., and Kaiser, W.M. (2001). Increased glutamine synthetase activity and changes in amino acid pools in leaves treated with 5-aminoimidazole-4-carboxiamide ribonucleoside (AICAR). Physiol Plantarum 111: 291-296.
Manak, M.S., and Ferl, R.J. (2007). Divalent cation effects on interactions between multiple Arabidopsis 14-3-3 isoforms and phosphopeptide targets. Biochemistry 46: 1055-1063.
Marshall, C.J. (1996). Cell signalling. Raf gets it together. Nature 383: 127-128.
Maudoux, O., Batoko, H., Oecking, C., Gevaert, K., Vandekerckhove, J., Boutry, M., and Morsomme, P. (2000). A plant plasma membrane H+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J Biol Chem 275: 17762-17770.
Morrison, D.K. (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends in Cell Biology 19: 16-23.
Muslin, A.J., and Xing, H. (2000). 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12: 703-709.
Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889-897.
Ohyama, A., Ito, H., Sato, T., Nishimura, S., Imai, T., and Hirai, M. (1995). Suppression of Acid Invertase Activity by Antisense Rna Modifies the Sugar Composition of Tomato Fruit. Plant Cell Physiol 36: 369-376.
Qi, X., Wu, Z., Li, J., Mo, X., Wu, S., Chu, J., and Wu, P. (2007). AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64: 575-587.

Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A., and Daut, J. (2002). Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol-London 545: 13-26.
Rausch, T., and Greiner, S. (2004). Plant protein inhibitors of invertases. Bba-Proteins Proteom 1696: 253-261.
Roberts, M.R. (2003). 14-3-3 Proteins find new partners in plant cell signalling. Trends Plant Sci 8: 218-223.
Roitsch, T., and Gonzalez, M.C. (2004a). Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9: 606-613.
Roitsch, T., and Gonzalez, M.C. (2004b). Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9: 606-613.
Rojo, E., Zouhar, J., Carter, C., Kovaleva, V., and Raikhel, N.V. (2003). A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100: 7389-7394.
Scholes, J., Bundock, N., Wilde, R., and Rolfe, S. (1996). The impact of reduced vacuolar invertase activity on the photosynthetic and carbohydrate metabolism of tomato. Planta 200: 265-272.
Sehnke, P.C., DeLille, J.M., and Ferl, R.J. (2002). Consummating signal transduction: The role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14: S339-S354.
Sehnke, P.C., Henry, R., Cline, K., and Ferl, R.J. (2000). Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiol 122: 235-241.
Shi, W.M., and Xu, W.F. (2006). Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: Analysis by real-time RT-PCR. Ann Bot-London 98: 965-974.
Shigeoka, S., Tamoi, M., Tabuchi, T., Demuratani, M., Otori, K., Tanabe, N., and Maruta, T. (2010). Point Mutation of a Plastidic Invertase Inhibits Development of the Photosynthetic Apparatus and Enhances Nitrate Assimilation in Sugar-treated Arabidopsis Seedlings. J Biol Chem 285: 15399-15407.
Sturm, A. (1999). Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121: 1-7.
Subramanian, R.R., Zhang, H.Y., Wang, H., Ichijo, H., Miyashita, T., and Fu, H. (2004). Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Exp Cell Res 294: 581-591.
Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Method Enzymol 428: 419-+.
Tzivion, G., Shen, Y.H., and Zhu, J. (2001). 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 20: 6331-6338.
Uchida, S., Kuma, A., Ohtsubo, M., Shimura, M., Hirata, M., Nakagama, H., Matsunaga, T., Ishizaka, Y., and Yamashita, K. (2004). Binding of 14-3-3 beta but not 14-3-3 sigma controls the cytoplasmic localization of CDC25B: binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B. J Cell Sci 117: 3011-3020.
van den Wijngaard, P.W.J., Sinnige, M.P., Roobeek, I., Reumer, A., Schoonheim, P.J., Mol, J.N.M., Wang, M., and De Boer, A.H. (2005). Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant Journal 41: 43-55.
van Hemert, M.J., de Steensma, H.Y., and van Heusden, G.P.H. (2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23: 936-946.
van Hemert, M.J., Niemantsverdriet, M., Schmidt, T., Backendorf, C., and Spaink, H.P. (2004). Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 xi. J Cell Sci 117: 1411-1420.
Very, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603.
Xiang, L., Le Roy, K., Bolouri-Moghaddam, M.R., Vanhaecke, M., Lammens, W., Rolland, F., and Van den Ende, W. (2011). Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot.
Xu, W.F., and Shi, W.M. (2006). Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot 98: 965-974.
Xue, H.W., Lou, Y., and Gou, J.Y. (2007). PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell 19: 163-181.
Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., and Cantley, L.C. (1997). The structural basis for 14-3-3 : phosphopeptide binding specificity. Cell 91: 961-971.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572.
Zhang, H., Wang, J., Nickel, U., Allen, R.D., and Goodman, H.M. (1997). Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34: 967-971.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41320-
dc.description.abstract14-3-3蛋白是一種鷹架蛋白,在阿拉伯芥中可以調控許多蛋白質的功能,例如酵素的活性,還有影響蛋白質在細胞內的分布。在前人的研究中,藉由雙重性親合純化發現了14-3-3蛋白跟中性蔗糖轉化酶有交互作用。蔗糖轉化酶是一種可以水解蔗糖轉化為葡萄糖與果糖的酵素,我們認為中性蔗糖轉化酶可能是間接的或是直接的與14-3-3有交互作用,因此藉由雙分子螢光互補分析確定中性蔗糖轉化酶與14-3-3有直接的交互作用,並且藉由T-DNA 插入變異株來研究中性蔗糖轉化酶可能的功能。結果證實了14-3-3與中性蔗糖轉化酶會在植物細胞中有直接的交互作用,進而可能影響蛋白質在胞器間的穿梭,而中性蔗糖轉化酶可能對於抵抗鹽分逆境有幫助。zh_TW
dc.description.abstract14-3-3 is a scaffold protein which regulates many protein functions such as enzyme activity and protein localization in Arabidopsis. In a previous study, 14-3-3 was found to interact with neutral invertase CINV1 by use of tandem affinity purification as a tool. We hypothesized that neutral invertase CINV1 may directly or indirectly interact with 14-3-3. Invertase catalyzes sucrose catabolism into glucose and fructose. We test and confirmed the interaction between 14-3-3omega and neutral invertase CINV1 by Bimolecular Fluorescence Complementation. This interaction may change the subcellular localization of CINV1. We have examined the phenotype of Arabidopsis cinv1 mutants under various growth condition. Our results indicate that the cinv1 mutants are salt sensitive.en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:15:46Z (GMT). No. of bitstreams: 1
ntu-100-R97b42024-1.pdf: 1077062 bytes, checksum: f97d5622d519a43a05de9aead3e8fce2 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 IV
Abstract V
縮寫對照表 VI
第一章、前言 1
一、鹽分逆境對植物的影響 1
二、蔗糖轉化酶 (Invertase, INV) 的簡介 1
三、14-3-3蛋白 4
四、 研究目標 6
第二章 材料與方法 7
一、實驗材料 7
二、實驗方法 7
第三章 結果 16
一、阿拉伯芥CINV1的被磷酸化位點與其他蔗糖轉化酶的蛋白質序列相似度分析 16
二、重組蛋白MBP-CINV1純化後之品質檢測 16
三、藉由生物體外磷酸化試驗分析CINV1可能的激酶 16
四、以雙分子螢光互補分析阿拉伯芥14-3-3 omega與中性蔗糖轉化酶之交互作用 17
五、cinv1變異株之基因型分析 17
六、cinv1變異株之基因表現量檢測 18
七、cinv1變異株之表現型分析 18
八、CINV1(S547)-YFP在原生質體中的位置 18
第四章 討論 19
參考文獻 21
表目錄 29
圖目錄 30
附錄 44
dc.language.isozh-TW
dc.title14-3-3蛋白與中鹼性蔗糖轉化酶在阿拉伯芥中分子間之交互作用zh_TW
dc.titlePhysical interaction between 14-3-3 and neutral/alkaline invertase in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林讚標,謝明勳,王淑珍
dc.subject.keyword中性蔗糖轉化&#37238,14-3-3,鹽分逆境,蛋白質磷酸化,雙分子螢光互補系統,zh_TW
dc.subject.keyword14-3-3,cytosolic invertase,Bimolecular Fluorescence Complementation,salt stress,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2011-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved