請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林仁混 | |
| dc.contributor.author | Chin-Chih Liu | en |
| dc.contributor.author | 劉晉志 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:15:27Z | - |
| dc.date.available | 2012-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-16 | |
| dc.identifier.citation | 1. Jemal A, S.R., Ward E, Hao Y, Xu J, Murray T, Thun MJ, Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96.
2. Sakr WA, H.G., Cassin BF, Pontes JE, Crissman JD., The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol, 1993. 150: p. 379-385. 3. Macri, E.a.L., M., Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev, 17: p. 337-344. 4. Tsihlias, J., Kapusta, L., and Slingerland, J., The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med, 1999. 50: p. 401-423. 5. Schiffer D, C.P., Fiano V, Ghimenti C, Piva R., Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett, 2002. 328(2): p. 125-128. 6. Yang G, A.G., De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW, Elevated skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res, 2002. 8: p. 3419-3426. 7. Andrea C. Carrano, E.E., Avram Hershko, Michele Pagano, SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol, 1999. 1: p. 193-199. 8. Hedwig Sutterlüty, E.C., Alain Marti, Christiane Wirbelauer, Matthias Senften, Uli Müller and Wilhelm Krek, p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol, 1999. 1: p. 207-214. 9. Lyuben M. Tsvetkov, K.-H.Y., Soo-Jung Lee, Hong Sun, Hui Zhang, p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol, 1999. 9: p. 661-664. 10. Charles J. Sherr, J.M.R., CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-1512. 11. Hengst L, R.S., Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol, 1998. 227(25-41). 12. Jeannette Philipp-Staheli, S.R.P., Christopher J. Kemp, p27Kip1: Regulation and Function of a Haploinsufficient Tumor Suppressor and Its Misregulation in Cancer. Exp. Cell Res, 2001. 264: p. 148-168. 13. CJ., S., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7. 14. Chu IM, H.L., Slingerland JM, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-267. 15. Hulit J, L.R., Li Z, Wang C, Katiyar S, Yang J, Quong AA, Wu K, Albanese C, Russell R, Di Vizio D, Koff A, Thummala S, Zhang H, Harrell J, Sun H, Muller WJ, Inghirami G, Lisanti MP, Pestell RG., p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/beta-catenin signaling. Cancer Res, 2006. 66(17): p. 8529-8541. 16. Carrano AC, P.M., Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol, 2001. 153(7): p. 1381-90. 17. Signoretti S, D.M.L., Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M, Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest, 2002. 110(5): p. 633-641. 18. Shim EH, J.L., Noh HL, Kim YJ, Sun H, Zeiss C, Zhang H, Expression of the F-box protein skp2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res, 2003. 63: p. 1583-1588. 19. Nakayama K, N.H., Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S., Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J, 2000. 19(9): p. 2069-2081. 20. Kossatz U, D.N., Zender L, Buer J, Manns MP, Malek NP, Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev, 2004. 18(21): p. 2602-2607. 21. Nakayama K, N.H., Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Natsume T, Nakayama KI., Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell, 2004. 6(5): p. 661-672. 22. Inke Timmerbeul, C.M.G.-E., Uta Kossatz, Xueyan Chen, Eduardo Firpo, Viktor Grünwald, Kenji Kamino, Ludwig Wilkens, Ulrich Lehmann, Jan Buer, Robert Geffers, Stefan Kubicka, Michael P. Manns, Peggy L. Porter, James M. Roberts, Nisar P. Malek Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer. . Proc Natl Acad Sci U S A, 2006. 103(38): p. 14009-14014. 23. Ben-Izhak O, L.-B.S., Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, Cohen S, Ciechanover A., Inverse relationship between skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol, 2003. 170: p. 241-245. 24. Traub F, M.M., Lück HJ, Kreipe HH, von Wasielewski R, Prognostic impact of Skp2 and p27 in human breast cancer. . Breast Cancer Res Treat, 2006. 99(2): p. 185-191. 25. Sonoda H, I.H., Ogawa K, Utsunomiya T, Masuda TA, Mori M, Significance of Skp2 Expression in Primary Breast Cancer. Clin. Cancer Res, 2006. 12: p. 1215-1220. 26. Shapira M, B.-I.O., Linn S, Futerman B, Minkov I, Hershko DD., The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer, 2005. 103(7): p. 1336-1346. 27. Gstaiger M, J.R., Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W., Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5043-5048. 28. Masuda TA, I.H., Nishida K, Sonoda H, Yoshikawa Y, Kakeji Y, Utsunomiya T, Mori M., Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res, 2003. 9(15): p. 5693-5698. 29. Ma XM, L.J., Guo JW, Liu Y, Zuo LF., Correlation of Skp2 expression in gastric carcinoma to expression of P27 and PTEN. Ai Zheng, 2006. 25(1): p. 56-61. 30. Ma XM, L.Y., Guo JW, Liu JH, Zuo LF., Relation of overexpression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma. World J Gastroenterol, 2005. 11(42): p. 6716-6721. 31. Saigusa K, H.N., Tsuda H, Yokoi S, Maruno M, Yoshimine T, Aoyagi M, Ohno K, Imoto I, Inazawa J., Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated withpoor prognosis of glioblastomas. Cancer Sci, 2005. 96(10): p. 676-683. 32. Yokoi S, Y.K., Mori M, Iizasa T, Fujisawa T, Inazawa J, Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol, 2004. 165(1): p. 175-180. 33. Zhu CQ, B.F., Pintilie M, Iyengar P, Liu N, Ho J, Chomiak T, Lau D, Winton T, Shepherd FA, Tsao MS., Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res, 2004. 10(6): p. 1984-1991. 34. Coe BP, H.L., Garnis C, Tsao MS, Gazdar AF, Minna J, Lam S, Macaulay C, Lam WL., High-resolution chromosome arm 5p array CGH analysis of small cell lung carcinoma cell lines. Genes Chromosomes Cancer, 2005. 42(3): p. 308-313. 35. Zhan F, C.S., Wu X, Chen B, Stewart JP, Kuehl WM, Barlogie B, Shaughnessy JD Jr, CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood, 2007. 109(11): p. 4995-5001. 36. J, S., Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology, 2005. 10(4): p. 117-126. 37. Li Q, M.M., Ross J, Sheehan C, Carlson JA., Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol, 2004. 31(10): p. 633-642. 38. Fukuchi M, M.N., Nakajima M, Fukai Y, Miyazaki T, Kato H, Kuwano H., Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res, 2004. 24(2B): p. 777-783. 39. Harada K, S., Kawaguchi S, Kawashima Y, Itashiki Y, Yoshida H, Sato M., High expression of S-phase kinase-associated protein 2 (Skp2) is a strong prognostic marker in oral squamous cell carcinoma patients treated by UFT in combination with radiation. Anticancer Res, 2005. 25(3C): p. 2471-2475. 40. Kudo Y, K.S., Sato S, Miyauchi M, Ogawa I, Takata T., High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res, 2001. 61(19): p. 7044-7047. 41. Sui L, D.Y., Watanabe Y, Yamaguchi F, Sugimoto K, Tokuda M, Clinical significance of Skp2 expression, alone and combined with Jab1 and p27 in epithelial ovarian tumors. Oncol Rep. , 2006. 15(4): p. 765-771. 42. Frescas D, P.M., Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat Rev Cancer, 2008. 8(6): p. 438-449. 43. Kamura T, H.T., Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI., Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nat Cell Biol, 2004. 6(12): p. 1229-1235. 44. Hattori T, I.T., Abe K, Kikuchi H, Kitagawa K, Oda T, Uchida C, Kitagawa M., Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res, 2007. 67(22): p. 10789-10795. 45. Goto T, T.M., Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L, Feroze-Zaidi F, Maywald N, Sajin M, Dina RE, Ishihara O, Takeda S, Lam EW, Bamberger AM, Ghaem-Maghami S, Brosens JJ., Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene, 2008. 27(1): p. 9-19. 46. Huggins, C., Hodges, C.V., Studies in prostatic cancer. I. The effects of castration, of estrogen and of androgen injection of serum phosphatases in metastatic carcinoma of the prostate. Cancer Res, 1941. 1: p. 293-302. 47. Nichenametla SN, T.T., Barney DL, Exon JH., A Review of the Effects and Mechanisms of Polyphenolics in Cancer. Crit Rev Food Sci Nutr., 2006. 46(2): p. 161-183. 48. Hakkinen SH, K.S., Heinonen IM, Mykkanen HM, Torronen AR., Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem, 1999. 47(6): p. 2274-2279. 49. Formica JV, R.W., Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol, 1995. 33(12): p. 1061-1080. 50. Yang CS, L.J., Huang MT, Newmark HL, Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr, 2001. 21(381-406). 51. Bors W, H.W., Michel C, Saran M., Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol, 1990. 186(343-355). 52. Kandaswami C, M.E., Jr., Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol, 1994. 366: p. 351-376. 53. Bors W, M.C., Saran M., Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. Methods Enzymol, 1994. 234: p. 420-429. 54. Nair MP, K.C., Mahajan S, Chadha KC, Chawda R, Nair H, Kumar N, Nair RE, Schwartz SA, The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim Biophys Acta, 2002. 1593(1): p. 29-36. 55. HK., W., The therapeutic potential of flavonoids. Expert Opin Investig Drugs, 2000. 9(9): p. 2103-2119. 56. McCann SE, A.C., Moysich KB, Brasure J, Marshall JR, Freudenheim JL, Wilkinson GS, Graham S., Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr Cancer, 2005. 53(1): p. 33-41. 57. Caltagirone S, R.C., Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M, Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer, 2000. 87(4): p. 595-600. 58. Balasubramanian S, G.S., Inhibitory effect of dietary flavonol quercetin on 7,12-dimethylbanz[a]anthracene- induced hamster buccal pouch carcingoenesis. Carcinogenesis, 1996. 17(877-879). 59. Knekt P, J.R., Seppänen R, Hellövaara M, Teppo L, Pukkala E, Aromaa A, Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol, 1997. 146(3): p. 223-230. 60. Verma AK, J.J., Gould MN, Tanner MA, Inhibition of 7,12 dimethylbenz(a)anthracene and Nnitrosomethylurea induced rat mammary cancer by dietary flavonol quercetin. Cancer Res, 1988. 48(5754-5758). 61. Beniston RG, C.M., Quercetin elevates p27Kip1 and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene, 2003. 22(35): p. 5504-5514. 62. Lee TJ, K.O., Kim YH, Lim JH, Kim S, Park JW, Kwon TK, Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett, 2006. 240(2): p. 234-242. 63. Aalinkeel R, B.B., Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA, The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate, 2008. 68(16): p. 1773-89. 64. Vijayababu MR, K.P., Arunkumar A, Ilangovan R, Aruldhas MM, Arunakaran J, Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J Cancer Res Clin Oncol, 2005. 131(11): p. 765-71. 65. Lee DH, S.M., Lee YJ, Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem Pharmacol, 2008. 75(12): p. 2345-55. 66. Walker EH, P.M., Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell, 2000. 6(4): p. 909-19. 67. Gupta S, H.T., Mukhtar H, Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys, 2003. 410(1): p. 177-85. 68. Liao S, U.Y., Guo J, Kokontis JM, Hiipakka RA, Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett, 1995. 96(2): p. 239-43. 69. Albrecht DS, C.E., Ferruzzi M, Bomser JA, Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact, 2008. 171(1): p. 89-95. 70. Nam S, S.D., Dou QP, Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem, 2001. 276(16): p. 13322-30. 71. Huang HC, W.T., Lin CL, Lin JK., EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology, 2008. 149(12): p. 5972-5983. 72. Jian L, X.L., Lee AH, Binns CW, Protective effect of green tea against prostate cancer: a case-control study in southeast China. Int J Cancer, 2004. 108(1): p. 130-5. 73. Petra W. van Duijn, J.T., PI3K/Akt signaling regulates p27kip1 expression via skp2 in PC3 and DU145 prostate cancer cells, but is not a major factor in p27kip1 regulationin LNCaP and PC346 cells. The Prostate, 2006. 66(749-760). 74. Roy S, K.M., Agarwal C, Tecklenburg M, Sclafani RA, Agarwal R, p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther, 2007. 6(10): p. 2696-707. 75. Sun L, C.L., Yu Y, Meng Q, Cheng X, Zhao Y, Sui G, Zhang F, Knockdown of S-phase kinase-associated protein-2 expression in MCF-7 inhibits cell growth and enhances the cytotoxic effects of epirubicin. Acta Biochim Biophys Sin (Shanghai), 2007. 39(12): p. 999-1007. 76. Maddika S, P.S., Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K, Los M, Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol, 2009. 29(5): p. 1235-1248. 77. Vlietstra RJ, v.A.D., Hermans KG, van Steenbrugge GJ, Trapman J, Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res, 1998. 58(13): p. 2720-3. 78. Whang YE, W.X., Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL, Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci U S A, 1998. 95(9): p. 5246-50. 79. Zhang L, W.C., F-box protein Skp2: a novel transcriptional target of E2F. Oncogene, 2006. 25(18): p. 2615-27. 80. Reichert M, S.D., Hamacher R, Schmid RM, Schneider G, Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res, 2007. 67(9): p. 4149-56. 81. Imaki H, N.K., Delehouzee S, Handa H, Kitagawa M, Kamura T, Nakayama KI, Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res, 2003. 63(15): p. 4607-13. 82. Kang YK, S.R., Ko L, Wang T, Tsai SY, Tsai MJ, O'Malley BW, Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis. Cancer Res, 2008. 68(19): p. 7887-96. 83. Wang IC, C.Y., Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH, Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol, 2005. 25(24): p. 10875-94. 84. Schneider G, S.D., Siveke JT, Fritsch R, Greten FR, Schmid RM, IKKalpha controls p52/RelB at the skp2 gene promoter to regulate G1- to S-phase progression. EMBO J, 2006. 25(16): p. 3801-12. 85. Zuo T, L.R., Zhang H, Chang X, Liu Y, Wang L, Zheng P, Liu Y, FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest, 2007. 117(12): p. 3765-73. 86. Gao D, I.H., Tseng A, Chin RY, Toker A, Wei W., Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APC–Cdh1-mediated Skp2 destruction. Nat Cell Biol, 2009. 11(4): p. 397-408. 87. Lin HK, W.G., Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, Tempst P, Pandolfi PP., Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol, 2009. 11(4): p. 420-432. 88. Jonason JH, G.N., Wu M, Zhang H, Sun H, Regulation of SCF(SKP2) ubiquitin E3 ligase assembly and p27(KIP1) proteolysis by the PTEN pathway and cyclin D1. Cell Cycle, 2007. 6(8): p. 951-61. 89. Rodier G, C.P., Tanguay PL, Boutonnet C, Meloche S, Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J, 2008. 27(4): p. 679-91. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41299 | - |
| dc.description.abstract | 在包括攝護腺癌、乳癌、肺癌以及許多其他腫瘤組織裡發現,p27Kip1蛋白的缺乏,以及藉由參與多泛素化修飾(polyubiquitilation)來造成p27Kip1蛋白量下降的第二型S週期激酶相關蛋白(S phase kinase-associated protein 2,skp2)的過量表現,與腫瘤的惡化程度呈現高度的關係。
為了找出對於非雄性素依賴型(androgen-independent)攝護腺癌具有治療或化學預防潛能的藥物,我們篩選了多酚類物質,發現quercetin以及EGCG對非雄性素依賴型攝護腺癌細胞PC3以及DU145具有降低第二型S週期激酶相關蛋白(skp2)之mRNA與蛋白量以及抑制生長的作用。此外,quercetin會提升p27Kip1的與p21Cip1的蛋白量,EGCG則會增加p21Cip1並使p27Kip1減少。透過流式細胞儀觀察,發現在經過24小時的加藥處理後, quercetin會提升PC3細胞中的G1週期比例,EGCG則會增加sub-G1週期的比例。先前有研究指出在非雄性素依賴型攝護腺癌細胞PC3以及DU145中,阻斷PI3K-Akt訊息傳遞路徑會造成第二型S週期激酶相關蛋白(skp2)量的降低,並伴隨著p27Kip1蛋白量的增高,在本篇研究中也發現quercetin跟PI3K的專一性抑制劑LY294002都會降低Akt的磷酸化以及第二型S週期激酶相關蛋白(skp2)的mRNA以及蛋白量,並伴隨著p27Kip1蛋白量的提升。然而EGCG的處理並無法降低Akt的磷酸化。總結以上結果我們發現,quercetin透過阻斷PI3K-Akt訊息傳遞路徑以及降低第二型S週期激酶相關蛋白(skp2)的mRNA與蛋白表現量而造成p27Kip1與p21Cip1蛋白的累積,使細胞被拘留在G1週期,EGCG則會同時降低細胞第二型S週期激酶相關蛋白(skp2)以及p27Kip1的量並造成細胞凋亡(apoptosis)。 從以上的實驗結果我們發現了quercetin和EGCG透過降低第二型S週期激酶相關蛋白(skp2)表現達到抑制非雄性素依賴型攝護腺癌細胞生長的新分子機制,也顯示第二型S週期激酶相關蛋白(skp2)可能是治療攝護腺癌重要的分子標的。 | zh_TW |
| dc.description.abstract | Loss of p27Kip1 and overexpression of S phase kinase-associated protein 2 (skp2), an ubiquitin ligase subunit targets p27Kip1 for degradation by polyubiquitynation, are correlated with tumor progression in many cancers, such as prostate cancer, breast cancer, and lung cancer.
In order to find potential drugs for therapy or chemoprevention toward androgen-independent prostate cancer, we screened polyphenolic compounds and found that quercetin and EGCG both inhibited the cell growth and downregulated the mRNA and protein levels of skp2 in the human androgen-independent prostate carcinoma PC3 and DU145 cells. Furthermore, quercetin upregulated the protein levels of p27Kip1 and p21Cip1. EGCG upregulated p21Cip1 but reduced p27Kip1 level. Analyzed by flow cytometry, we found that quercetin elevated the G1 phase distribution and EGCG raised the sub-G1 phase distribution at 24 hour of treatment. The previous study has shown that blocking of PI3k-Akt pathway leads to the reduction of skp2 protein and the concomitant elevation of the p27Kip1 protein level. We also found that both quercetin and a specific PI3K inhibitor – LY294002 reduced phosphorylated Akt (pAkt) and both skp2 mRNA and protein levels. Concomitantly, protein levels of p27Kip1 and p21Cip1 are upregulated by quercetin and LY294002. However, EGCG treatment can’t reduce the phosphorylation level of Akt. Taken together, these results indicated that by blocking PI3K-Akt pathway, quercetin reduces the mRNA and protein levels of skp2 and results in accumulations of protein p27Kip1 and p21Cip1. Thus quercetin arrests cells in G1 phase. EGCG decreased both skp2 and p27Kip1 level and leads to cell apoptosis. In this study, we found that quercetin and EGCG inhibit the growth of androgen-independent prostate cancer cells via downregulating skp2 protein, a novel pharmaceutical effect of them toward prostate cancer cells. It also revealed that skp2 may be an important therapeutic molecular target against prostate cancers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:15:27Z (GMT). No. of bitstreams: 1 ntu-98-R96442004-1.pdf: 2130944 bytes, checksum: d5566bf8ef86f1b1d3cec8c5f8d173db (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要:1
Abstract:2 Abbreviations:4 Introduction:5 Materials and Methods:14 Results:19 Discussion:26 References:31 Figures:47 Appendices:62 | |
| dc.language.iso | en | |
| dc.subject | 植物多酚 | zh_TW |
| dc.subject | 第二型S週期激酶 | zh_TW |
| dc.subject | 相關蛋白 | zh_TW |
| dc.subject | 攝護腺癌 | zh_TW |
| dc.subject | 槲皮素 | zh_TW |
| dc.subject | 表沒食子兒茶素沒食子酸酯 | zh_TW |
| dc.subject | p21 | en |
| dc.subject | PC3 | en |
| dc.subject | EGCG | en |
| dc.subject | skp2 | en |
| dc.subject | p27 | en |
| dc.subject | quercetin | en |
| dc.title | Quercetin與EGCG抑制攝護腺腫瘤細胞生長機制之探討 | zh_TW |
| dc.title | Quercetin and EGCG inhibit the growth of human prostate carcinoma cells by down-regulation of skp2 protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭水銀,周綠蘋,何元順,陳彥州 | |
| dc.subject.keyword | 第二型S週期激酶,相關蛋白,攝護腺癌,槲皮素,表沒食子兒茶素沒食子酸酯,植物多酚, | zh_TW |
| dc.subject.keyword | skp2,p27,p21,quercetin,EGCG,PC3, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
