Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀文
dc.contributor.authorPo-Hung Linen
dc.contributor.author林柏宏zh_TW
dc.date.accessioned2021-06-15T00:15:20Z-
dc.date.available2009-06-23
dc.date.copyright2009-06-23
dc.date.issued2009
dc.date.submitted2009-06-18
dc.identifier.citation[1] F. Balasa, “Modeling non-slicing floorplans with binary trees,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 13–16, San Jose, CA, November 2000.
[2] F. Balasa and K. Lampaert,“Module placement for analog layout using the sequence-pair representation,” Proceedings of ACM/IEEE Design Automation Conference, pp. 274–179, New Orleans, LA, June 1999.
[3] F. Balasa and K. Lampaert, “Symmetry within the sequence-pair representation in the context of placement for analog design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 7, pp. 721–731, July 2000.
[4] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “Efficient solution space exploration based on segment trees in analog placement with symmetry constraints,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 497–502, San Jose, CA, November 2002.
[5] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “Using red-black interval trees in device-level analog placement with symmetry constraints,” Proceedings
of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 777–782, Kitakyushu, Japan, January 2003.
[6] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “On the exploration of the solution space in analog placement with symmetry constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 23, No. 2, pp. 177–191, February 2004.
[7] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-trees: a new representation for non-slicing floorplans,” Proceedings of ACM/IEEE Design Automation Conference, pp. 458–463, Los Angeles, CA, June 2000.
[8] E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli, “Generalized constraint generation for analog circuit design,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 408–414, Santa Clara, CA, November 1993.
[9] T.-C. Chen and Y.-W. Chang, “Modern Floorplanning Based on B*-trees and Fast Simulated Annealing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 4, pp. 637–650, April 2006.
[10] M. Chrzanowska-Jeske, B. Wang and G. Greenwood, “Floorplanning with performance-based clustering,” Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 724–727, Chicago, IL, May 1993.
[11] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,“KOAN/ANAGRAM II: new tools for device-level analog placement and routing,”IEEE Journal of Solid-State Circuits, Vol. 26, No. 3, pp. 330–342, March 1991.
[12] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley, Analog Device-Level Layout Automation. Kluwer Academic Publishers, 1994.
[13] J. Dion and L. M. Monier, “Contour: A tile-based gridless router,” Western Research Laboratory Research Report, Palo Alto, CA, 1995.
[14] H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, “The sizing rules method for analog integrated circuit design,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 343–349, San Jose, CA, November 2001.
[15] Q. Hao, S. Dong, S. Chen, X. Hong, Y. Su, and Z. Qu, “The sizing rules method for analog integrated circuit design,” Proceedings of IEEE International Conference on Communications, Circuits and Systems, Vol. 2, pp. 1339–1343, 2004.
[16] A. Hastings, The Art of Analog Layout. 2nd Ed., Prentice Hall, 2006.
[17] D. W. Jepsen and C. D. Gelatt, “Macro placement by monte carlo annealing,” Proceedings of IEEE International Conference on Computer Design, Circuits and Systems, pp. 495–498, San Jose, CA, November 1983.
[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, Vol. 220, No. 4598, pp. 671–680, May 1983.
[19] S. Koda, C. Kodama, and K. Fujiyoshi, “Linear Programming-Based Cell Placement With Symmetry Constraints for Analog IC Layout,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 4, pp. 659–668, April 2007.
[20] K. Krishnamoorthy, S. C. Maruvada, and F. Balasa, “Topological Placement with Multiple Symmetry Groups of Devices for Analog Layout Design,” Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2032–2035, New Orleans, LA, May 2007.
[21] K. Lampaert, G. Gielen, and W. M. Sansen, “A performance-driven placement tool for analog integrated circuits,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 7, pp. 773–780, July 1995.
[22] K. Lampaert, G. Gielen, and W. M. Sansen, Analog Layout Generation for Performance and Manufacturability. Kluwer Academic Publishers, 1999.
[23] J.-M. Lin, G.-M. Wu, Y.-W. Chang and J.-H. Chuang, “Placement with symmetry constraints for analog layout design using TCG-S,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, Vol. 2, pp. 1135–1138, Shanghai, China, January 2005.
[24] J.-M. Lin and G.-M. Wu and Y.-W. Chang and J.-H. Chuang, “Module placement with boundary constraints using B*-trees,” IEE Proceedings–Circuits, Devices, and Systems, Vol. 149, No. 4, pp. 251–256, August 2002.
[25] J. Liu, S. Dong, X. Hong, Y. Wang, O. He, and S. Goto, “Symmetry constraint based on mismatch analysis for analog layout in SOI technology,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 772–775, Seoul, Korea, January 2008.
[26] J. Liu, S. Dong, Y. Ma, D. Long, and X. Hong, “Thermal-driven symmetry constraint for analog layout with CBL representation,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 191–196, Yokohama, Japan, January 2007.
[27] D. Long, X. Hong, and S. Dong, “Signal-path driven partition and placement for analog circuit,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 694–699, Yokohama, Japan, January 2006.
[28] R. Ludwig and G. Bogdanov, RF Circuit Design: Theory and Applications. 2nd Ed., Prentice Hall, 2009.
[29] Q. Ma and F.-Y. Young, “Analog placement with common centroid constraints,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 579–585, San Jose, CA, November 2007.
[30] E. Malavasi, E. Charbon,E. Felt, and A. Sangiovanni-Vincentelli, “Automation of IC layout with analog constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, No. 8, pp. 923–942, August 1996.
[31] S. C. Maruvada, A. Berkman, K. Krishnamoorthy, and F. Balasa, “Deterministic skip lists in analog topological placement,” Proceedings of IEEE International Conference on ASIC, Vol. 2, pp. 834–837, Shanghai, China, October 2005.
[32] T. Massier, H. Graeb, and U. Schlichtmann, “Sizing rules for bipolar analog circuit design,” Proceedings of ACM/IEEE International Conference on Design, Automation and Test in Europe, pp. 140–145, Munich, Germany, March 2008.
[33] S. W. Mehranfar, “STAT: a schematic to artwork translator for custom analog cells,” Proceedings of IEEE Custom Integrated Circuits Conference, pp. 30.2.1 - 30.2.4, Boston, MA, May 1990.
[34] R. Naiknaware and T. S. Fiez, “Automated hierarchical CMOS analog circuit stack generation with intramodule connectivity and matching considerations,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 3, pp. 304–317, March 1999.
[35] T. Nojima, Y. Takashima, S. Nakatake, and Y. Kajitani, “A device-level placement with multi-directional convex clustering,” Proceedings of ACM Great Lakes Symposium on VLSI, pp. 196–201, Boston, MA, April 2004.
[36] T. Nojima, X. Zhu, Y. Takashima, S. Nakatake, and Y. Kajitani, “Multilevel placement with circuit schema based clustering in analog IC layouts,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 406–411, Yokohama, Japan, January 2004.
[37] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather, “SubGemini: Identifying SubCircuits using a Fast Subgraph Isomorphism Algorithm,” Proceedings of ACM/IEEE Design Automation Conference, pp. 31–37, Dallas, TX, June 1993.
[38] Y. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, “Block placement with symmetry constraints based on the O-tree non-silicing representation,” Proceedings of ACM/IEEE Design Automation Conference, pp. 464–467, Los Angeles, CA, June 2000.
[39] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, Vol. 24, No. 5, pp. 1433–
1439, October 1989.
[40] M. Strasser, M. Eick, H. Grab, U. Schlichtmann, and F. M. Johannes, “Deterministic analog circuit placement using hierarchically bounded enumeration and enhanced shape functions,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 306–313, San Jose, CA, November 2008.
[41] Y.-C. Tam, E. F.-Y. Young and C. Chu, “Analog placement with symmetry and other placement constraints,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 349–354, San Jose, CA, November 2006.
[42] R. Plassche. CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. 2nd Ed., Kluwer Academic Publishers, 2003.
[43] T.-Y. Wang and C. C.-P. Chen, “3D thermal-ADI: a linear time chip-level transient thermal simulator,” [Online tool] 2003. http://cc.ee.ntu.edu.tw/˜cchen/3D Thermal ADI.htm
[44] T.-Y.Wang, Y.-M. Lee, and C. C.-P. Chen, “3D thermal-ADI: an efficient chiplevel transient thermal simulator,” Proceedings of ACM International Symposium on Physical Design, pp. 10–17, Monterey, CA, April 2003.
[45] N. H. E. Weste and D. Harris. CMOS VLSI design: A Circuits and System Perspective. 3rd Ed., Addison Wesley, 2006.
[46] G.-M.Wu, Y.-C. Chang, and Y.-W. Chang, “Rectilinear block placement using B*-trees,” ACM Transactions on Design Automation of Electronics Systems, Vol. 8, No. 2, pp. 188–202, April 2003.
[47] W. S. Yuen and E. F. Y. Young, “Slicing floorplan with clustering constraint,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 4, pp. 659–668, April 2007.
[48] L. Zhang, C.-J. R. Shi, and Y. Jiang, “Symmetry-aware placement with transitive closure graphs for analog layout design,” Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pp. 180–185, Seoul, Korea, March 2008.
[49] X. Zhu, S. Nakatake, Y. Kajitani, and N. Ono, “Floorplanning consistent with partial-clustering on the sequence-pair,” Proceedings of IEEE International Conference on Communications, Circuits and Systems, Vol. 2, pp. 1386–1390, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41291-
dc.description.abstract在現今類比佈局設計中,為了達到好的佈局品質和電路效能,在類比元件擺置的過程中,考慮佈局設計階層是非常重要的。為了降低元件間的不匹配,和電路對溫度和製程變異的敏感度而產生有害的寄生效應,在每個佈局階層中考量元件間的匹配、對稱、和相鄰接近,更是不可或缺的。此外,當整合功率和非功率元件在同一顆晶片時,如何使類比擺置達到理想的晶片溫度分佈,使得元件之間的溫度都能匹配,亦是一項重要的課題。
在本論文中,我們描述了一個考慮佈局設計階層的階層式類比電路之元件擺置方法,並提出全新的階層式二元樹 (HB*-tree) 和自動對稱可實行二元樹 (ASF-B*-trees) 來加以實現。為了達到元件間的匹配、(階層式)對稱、和(階層式)相鄰接近等最重要的類比擺置限制條件,以及理想的晶片溫度分佈,我們進一步提出:(1)一個以樣式為基礎的匹配擺制和繞線方法,以加速匹配元件群組,如電流鏡,之佈局圖的生成,(2)目前文獻中第一個線性時間可完成的封裝演算法,處理類比元件擺置,同時依據「對稱島」的概念考慮考慮對稱元件群組,如差動電路元件,的擺置,(3)目前文獻中第一個根據階層式電路元件群組,處理類比元件擺置,並探討元件相鄰接近和階層式二元樹 (HB*-tree) 的特性與其間的關係,(4)目前文獻中第一個直接對晶片溫度分佈做最佳化的溫度驅動的類比元件擺置方法。
根據基準評價電路所做的實驗結果顯示,我們所提出的階層式類比元件擺置方法和過去文獻中所提的方法相比,在處理元件間的匹配、(階層式)對稱、和(階層式)相鄰接近等類比元件擺置限制條件最有效率,同時可以在最短的時間內,得到最佳的類比電路效能及精確性,且最不易受到溫度梯度帶來的影響。
zh_TW
dc.description.abstractIn modern analog layout design, it is very important to consider layout design hierarchy for better layout quality and circuit performance especially when conducting analog device placement. To reduce unwanted parasitic effects arising from device mismatches and circuit sensitivities due to thermal gradients and process variation, it is also essential to consider device matching, device symmetry, and device proximity in each hierarchy. In addition, when integrating power and non-power devices on the same chip, the preferred thermal profile should be further considered for better thermal device matching.
In this dissertation, we present a hierarchical analog placement approach with the consideration of layout design hierarchy by introducing the novel hierarchical B*-tree (HB*-tree) and automatically symmetric-feasible B*-tree (ASF-B*-tree) floorplan representations. To further achieve the most important layout constraints including, device matching, (hierarchical) device symmetry, and (hierarchical) device proximity, as well as the preferred thermal profile, we propose: (1) a pattern-based matching placement and routing approach to facilitate the layout generation of matching device groups, such as current
mirrors, (2) the first linear-time packing algorithm for analog placement with symmetry constraints by introducing the symmetry-island formulation for symmetry device groups, such as differential circuits, (3) the first analog placement approach based on hierarchical circuit clustering by exploring the correlation between the proximity constraints and properties of HB*-trees, and (4) the first thermal-driven analog placement considering thermal device
matching by directly optimizing the thermal profile on the chip.
Experimental results based on the analog benchmark circuits show that our hierarchical analog placement approach is the most effective one to handle analog placement with matching, (hierarchical) symmetry, and (hierarchical)
proximity constraints. It can achieve the best published runtime efficiency and analog circuit performance/accuracy with the least impact due to the thermal gradient.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:15:20Z (GMT). No. of bitstreams: 1
ntu-98-D94943034-1.pdf: 3264118 bytes, checksum: 6e6242c26814a7ed889557bdb73b7435 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements ii
Abstract (Chinese) iii
Abstract v
List of Tables x
List of Figures xi
Chapter 1. Introduction 1
1.1 Analog Layout Synthesis Flow . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Modern Analog Placement Requirements . . . . . . . . . . . . . . . . . . 2
1.2.1 Device Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Device Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Device Proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Hierarchical Device Constraints . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Thermal Consideration . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Analog Placement Techniques . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Constructive Approach . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Bounded Enumerative Approach . . . . . . . . . . . . . . . . . . . 8
1.3.3 Simulated-annealing Approach . . . . . . . . . . . . . . . . . . . . 8
1.4 Floorplan Representations in Analog Placement . . . . . . . . . . . . . . 8
1.4.1 Absolute Floorplan Representation . . . . . . . . . . . . . . . . . . 9
1.4.2 Topological Floorplan Representation . . . . . . . . . . . . . . . . 10
1.5 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.1 Analog Placement with Pattern Routing for Matched Devices . . . 12
1.5.2 Analog Placement Based on Symmetry-Island Formulation . . . . . 12
1.5.3 Analog Placement based on Hierarchical Module Clustering . . . . 13
1.5.4 Thermal-driven Analog Placement Considering Device Matching . 13
1.6 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 2. Analog Placement with Pattern Routing for Matched
Devices 15
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Matching Device Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Pattern-based Device Layout Generation . . . . . . . . . . . . . . . . . . 18
2.4.1 Pattern-based Matching Placement . . . . . . . . . . . . . . . . . . 18
2.4.2 Pattern-based Matching Routing . . . . . . . . . . . . . . . . . . . 18
2.5 Inter-device Placement and Routing . . . . . . . . . . . . . . . . . . . . . 22
2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 3. Analog Placement Based on Symmetry-Island Formula-
tion 26
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Symmetry Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Symmetry Island . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Placement of a Symmetry Group . . . . . . . . . . . . . . . . . . . . . . 34
3.4 The Hierarchical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 HB*-tree Representation . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 ASF-B*-tree Packing . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 HB*-tree Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Consideration of Non-symmetry-island Placements . . . . . . . . . 47
3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 HB*-tree Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 ASF-B*-tree Perturbation . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Contour Node Related Updates . . . . . . . . . . . . . . . . . . . . 53
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Chapter 4. Analog Placement based on Hierarchical Module Clus-
tering 63
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Hierarchical Module Clustering . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Placement Requirements . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Placement Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Hierarchical Framework . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Hierarchical Packing . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Hierarchical Perturbation . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 5. Thermal-driven Analog Placement Considering Device
Matching 82
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Desired Thermal Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Thermal-driven Analog Placement . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Thermal Profile Computation . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Thermal Profile Optimization . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Thermal-driven Matching Device Placement . . . . . . . . . . . . . 94
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Chapter 6. Concluding Remarks and Future Work 104
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Bibliography 107
Vita 114
Publication List 115
dc.language.isoen
dc.subject類比電路zh_TW
dc.subject擺置zh_TW
dc.subject平面規劃zh_TW
dc.subject實體設計zh_TW
dc.subjectPhysical Designen
dc.subjectAnalog Circuiten
dc.subjectPlacementen
dc.subjectFloorplanningen
dc.title階層式類比電路之擺置zh_TW
dc.titleHierarchical Analog Circuit Placementen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭斯彥,陳少傑,李鎮宜,徐爵民,王廷基
dc.subject.keyword實體設計,平面規劃,擺置,類比電路,zh_TW
dc.subject.keywordPhysical Design,Floorplanning,Placement,Analog Circuit,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2009-06-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved