請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41277完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 貝蘇章(Soo-Cgang Pei) | |
| dc.contributor.author | Shih-Hsin Lin | en |
| dc.contributor.author | 林仕昕 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:15:08Z | - |
| dc.date.available | 2009-06-30 | |
| dc.date.copyright | 2009-06-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-22 | |
| dc.identifier.citation | [1] J. A. Van Alste and T. S. Schilder, “Removal of based-line wander and power-line interference from the ECG by an efficient FIR filter with reduced number of taps,” IEEE Trans. Biomed Eng., vol. BME-32, pp.1052-1060, Dec. 1985.
[2] J. D. Wang and H. J. Trussell, “Adaptive harmonic noise cancellation with an application to distribution power line communication,” IEEE Trans. Commun., vol. 36, pp. 875-884, July 1998. [3] A. Nehorai and B. Porat, “Adaptive comb filtering for harmonic signal enhancement,” IEEE Trans Acoust., Speech, Signal Processing, vol. ASSP-24, pp. 1124-1138, Nov. 1986. [4] Y. K. Jang and J. F. Chicharo, “Adaptive IIR comb filter for harmonic signal cancellation,” Int. J. Electron., vol. 75, pp. 241-250, 1993. [5] C. M. Anderson, E. H. Satorius, and J. Zeidler, “Adaptive enhancement of finite bandwidth signals in white Gaussian noise,” IEEE Trans Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 17-27, Feb. 1983. [6] A. Nehoral and M. Morf, “enhancement of sinusoids in colored noise and the whitening performance of exact least squares predictor,” IEEE Trans Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 353-363, June. 1983. [7] K. W. Whang, G. C. Cagle and S. W. Smart, “The power distribution system as a communication medium for load management and distribution automation,” in Proc. IEEE Global Telecommun., Conf., San Diego, CA, Nov. 28-Dec. 1, 1983, pp.478-482. [8] S. C. Pei and C. C. Tseng, “Elimination of AC interference in electrocardiogram using IIR notch filter with transdient suppression,” IEEE Trans. Biomed. Eng., vol. 42, pp. 1128-1132, Nov. 1995. [9] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the unit delay : Tools for fractional delay filter design”, IEEE Signal Processing Mag., vol. 13, pp.30-60, Jan. 1996. [10] S. C. Pei and C. C. Tseng, “A comb filter design using fractional-smaple delay,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45, no. 6, pp. 649-653, June, 1998. [11] K. Rajamani, Y. S. Lai and C. W. Farrow, “An efficient algorithm for sample rate conversion from CD to DAT,” IEEE Signal Process. Lett., vol. 7, pp. 288-290, Oct. 2000. [12] V. Valimaki and T. I. Laakso, “Principle of fractional delay filters,” Int. Conf. Acoust. Speech Signal Processing, pp. 3870-3873, May. 2000. [13] T. B. Deng. “High-resolution image interpolation using two-dimensional Lagrange-type variable fractional-delay filter,” in IEICE Technical Report, Hirosaki, Japan, Mar. 2005, vol. SIS2004-60, pp.27-30. [14] W. S. Lu and T. B. Deng, “An improved weighted least-squares design for variable fractional delay FIR filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 8, pp. 1035-1040, Aug. 1999. [15] A. Tarczynski, G.D. Cain, E. Hermanowicz, and M. Rojewski, “WLS design of variable frequency response FIR filters,” in Proc. 1997 IEEE Int. Symp. Circuits and Systems, Hong Kong, Jun. 9-12, 1997, pp.2244-2247. [16] T. B. Deng, “Discretization-free design of variable fractional-delay FIR digital filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 6, pp. 637-644, Jun. 2001. [17] C. W. Farrow, “A continuously variable digital delay element,” in Proc. 1988 IEEE Int. Symp. Circuits and Systems, Espoo, Finland. Jun 6-9, 1988, vol. 3, pp.2641-2645. [18] J. Vesma and T. Saramaki, “Design and properties of polynomial-based fractional delay filters,” Int. Symp. Circuits and Systems, vol. 1, pp. 104-107, 2000. [19] C. C. Tseng, “Design of variable fractional delay FIR filters using differentiator band,” in Proc. 2002 IEEE Int. Symp. Circuits and Systems, Espoo, Phoenix, AZ, May 26-29, 2002, vol. IV, pp.421-424. [20] C. C. Tseng, “Design of variable fractional delay filters using symmetry,” in Proc. 2004 IEEE Int. Symp. Circuits and Systems, Vancouver, Canada. May 23-26, 2004, vol. III, pp.477-480. [21] T. B. Deng, and Y. Lian, “Weighted-leasted-squares design of variable fractional-delay FIR filters using coefficient symmetry,” IEEE Trans.on Signal Processing., vol. 54, pp. 3023-3038, Aug. 2006. [22] T. B. Deng, “Design and parallel implementation of FIR digital filters with simultaneously variable magnitude and non-integer phase-delay,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no. 5, pp. 243-250, May. 2003. [23] J. J. Shyu, S. C. Pei, C. H. Chan and Y. D. Huang, “Minimax design of variable fractional-delay FIR digital filters by iterative weighted least-squares approach” IEEE Signal Process. Lett., vol. 15, pp. 693-696, Jul. 2008. [24] S. Engelberg, “Precise variable-Q filter design,” IEEE Signal Processing Mag., vol. 25, pp.113-114,119, Sep. 2008. [25] W. S. Lu and A. Antoniou, “Two-dimensional digital filters,” Marcel Dekker, New York, 1992, pp. 27-28, 106-117 [26] A. Oppenheim and R. Schafer, “Discrete-time signal processing,” 2nd ed, Prentice-Hall Inc., Upper Saddle river New Jersey, 1999. [27] Alan Y. Kwentus, Z. Jiang, and Alan N. Willson, “Application of Filter Sharpening to Cascaded Integrator-Comb Decimation on Filters,” IEEE Trans.on Signal Processing., vol. 45, no.2, pp. 457-467, Feb. 1997. [28] S. C. Pei and C. C. Tseng, “IIR multiple notch filter design based on allpass filter,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 133-136, Feb. 1998. [29] V. K. Srivastava and G. C. Ray, “Design of 2D–multiple notch filter and its application in reducing blocking artifact from DCT coded image,” in Proc. 22nd Ann. EMBS Int. Conf., July 2000, pp. 2829-2833 [30] Y. V. Joshi and S. C. Dutta, “Design of IIR multiple notch filters based on allpass filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, pp. 134-138, Feb. 1999. [31] M. Makundi, V. Valimaki, and T. I. Laakso, “Closed-form design of tunable fractional-delay allpass filter structures,” in Proc. IEEE. ISCAS 2001, vol. IV, Sydney, Australia, May 2001, pp. 434-437 [32] C. C. Tseng, “Design of 1-D and 2-D variable fractional delay allpass filters using weighted least-squares method,” IEEE Trans. Circuits Syst. I, Fundam. Theroy Appl., vol. 49, no. 10, pp. 1413-1422, Oct. 1999. [33] T. B. Deng, “Noniterative WLS design of allpass variable fractional-delay digital filters,” IEEE Trans. Circuits Syst. I, vol. 53, no. 2, pp. 358-371, Feb. 1999. [34] J. Y. Kaakinen and T. Saramaki, “An algorithm for the optimization of adjustable fractional-delay all-pass filters,” in Proc. IEEE ISCAS’04, vol. III, Vancouver, QC. Canada, May 23-26, 2004, pp. 153-156. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41277 | - |
| dc.description.abstract | 諧音干擾 (Harmonic Interference) 往往存在於各種信號處理的工程中;例如心電圖信號,語音信號…等等。透過梳型濾波器 (Comb Filter),我們可以有效率的濾除這些諧音干擾。由梳型濾波器的頻率響應可知,梳型濾波器的設計重點在於分數階延遲 (Fractional Delay)濾波器。這幾年來,分數階延遲可調式 (Variable Fractional Delay) 濾波器已經有重大突破,而且受到極大的重視。本篇論文,我們將深入研究如何把分數階延遲可調式濾波應用到梳型濾波器的設計之中;如此一來,這種新架構下的梳型濾波器將具有可調性;在本論文中,我們將之命名為:梳型可調式濾波器 (Tunable Comb Filter)。此外,把梳型濾波器放在一個回授路徑之中,即可得到相對應的多重帶通濾波器 (Multi-Bandpass Filter);結合我們所推薦的梳型可調式濾波器與這個回授路徑,則可以架構出一個多重帶通可調式濾波器 (Tunable Multi-Bandpass Filter)。
除了一維的梳型濾波器外,本論文後半段則是研究二維的梳型濾波器。本研究的目的是找出二維梳型濾波器的頻率響應。在這個問題上,我們發現許多值得且必要考量的因素,例如: 相位控制,穩定性 (Stability)…等等。我們將提出一個新的二維梳型濾波器的頻率響應。 本論文的主要創新與貢獻歸納如下: 梳型可調式濾波器、多重帶通可調式濾波器、二維梳型濾波器的頻率響應。 | zh_TW |
| dc.description.abstract | In many applications of signal processing, the harmonic interference rejection is required. An example is to cancel the power line interference in the electrocardiogram (ECG) signal in the biomedical area. The goal of the cancellation can be usually achieved through the use of comb filter, which is periodic with the stopband notches at 0 Hz. So far, several methods have been developed to design comb filter, and some of them are related to the design of fractional delay. As for fractional delay, the method of variable fractional delay (VFD) design has achieved a great attention due to the on-lining tuning property.
In this thesis, we will propose a new approach to transform the specification of comb filter design into that of VFD design. Under this approach, the designing problem is simplified to find the optimized coefficients of some induced delay from VFD filter, and thus the designed comb filter will tend to be on-line tunable. In addition, a feed-back path containing FIR comb filter will be proposed to design multi-bandpass filter. Through the on-line tuning property of FIR comb filter, the designed multi-bandpass filter will be on-line tunable also. After the investigation of one-dimensional (1-D) comb filter, two-dimensional (2-D) comb filter is worth our while. Since only few literatures are related to 2-D comb filter, the goal in this thesis is to find the transfer function of 2-D comb filter, which is more complicated than 1-D comb filter. Through a lot of experience, it is found that some important issues are necessary to consider detail for the goal. From these considerations, finally, we will derive the transfer function of 2-D comb filter. In this thesis, the primary achievements are: the connection between comb filter and VFD filter, the design of tunable comb filter, the design of tunable multi-bandpass filter, and a closed-from of 2-D comb filter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:15:08Z (GMT). No. of bitstreams: 1 ntu-98-R96942113-1.pdf: 3232261 bytes, checksum: a8acb94486ffcee5f60b94cc1a3c7062 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii Chapter 1 Introduction 1 1.1 Introduction to Comb filter 1 1.2 Design of Variable Fractional Delay FIR Filter Using the Farrow Structure 6 1.3 Two-Dimensional Comb filter 8 1.4 Primary Achievements 9 Chapter 2 Design of Tunable Comb Filters Using Variable Fractional Delay 11 2.1 Problem Formulation 12 2.2 Design of 1-D Tunable IIR Comb Filters Using Weighted Least-Square Approach and Coefficient Symmetry 16 2.3 Numerical Examples 26 2.4 Discussions 33 Chapter 3 Application and Extension of Tunable IIR Comb Filters 35 3.1 Application Experiments of Tunable Comb Filters 36 3.2 Design of Tunable Multi-Bandpass Filter by FIR Tunable Comb Filter 43 3.3 Discussions 47 Chapter 4 Design of 2-D IIR Comb Filters 49 4.1 Transfer function of 2-D FIR Comb Filters 50 4.2 Transfer Function of 2-D IIR Comb Filters 53 4.3 Stability Issue 56 4.4 Discussions 59 Chapter 5 Closed-Form of 2-D IIR Comb Filters 61 5.1 Phase Control Issue 62 5.2 Stability Issue 66 5.3 Normalization Issue 68 5.4 Closed-From of 2-D IIR Comb Filters 72 5.5 Discussions 76 Chapter 6 Conclusions and Future Work 77 6.1 Conclusions 77 6.2 Future Work 79 REFERENCE 81 | |
| dc.language.iso | en | |
| dc.subject | 諧音干擾 | zh_TW |
| dc.subject | 權重式最小平方差分逼進法 | zh_TW |
| dc.subject | 多重帶通濾波器 | zh_TW |
| dc.subject | 分數階延遲可調式濾波器 | zh_TW |
| dc.subject | 梳型IIR濾波器 | zh_TW |
| dc.subject | 梳型FIR濾波器 | zh_TW |
| dc.subject | Multi-Bandpass Filter | en |
| dc.subject | FIR Comb Filter | en |
| dc.subject | IIR Comb Filter | en |
| dc.subject | Harmonic Interference | en |
| dc.subject | Variable Fractional Delay | en |
| dc.subject | Weighted Least-Squares Approach | en |
| dc.title | 可調式一維與二維數位梳型濾波器之設計 | zh_TW |
| dc.title | Design of Tunable One-Dimensional and Two-Dimensional Digital Comb Filters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐忠枝,曾建誠,祁忠勇 | |
| dc.subject.keyword | 諧音干擾,梳型FIR濾波器,梳型IIR濾波器,分數階延遲可調式濾波器,多重帶通濾波器,權重式最小平方差分逼進法, | zh_TW |
| dc.subject.keyword | Harmonic Interference,FIR Comb Filter,IIR Comb Filter,Variable Fractional Delay,Multi-Bandpass Filter,Weighted Least-Squares Approach, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
