Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高景輝(Ching Huei Kao)
dc.contributor.authorTing-Shao Chouen
dc.contributor.author周庭卲zh_TW
dc.date.accessioned2021-06-15T00:15:06Z-
dc.date.available2009-06-30
dc.date.copyright2009-06-30
dc.date.issued2009
dc.date.submitted2009-06-22
dc.identifier.citation林雅琳 (2008) 水稻幼苗鎘逆境生理之研究:氮或熱休克之效應. 國立台灣大學農藝學系碩士論文.台北.
郭俊伶 (2008) 水稻幼苗鎘逆境生理之研究:硫或熱休克之效應. 國立台灣大學農藝學系碩士論文.
郭鴻裕、劉滄棽、朱戩良、劉禎祺 (2004) 土壤資訊應用. 中華永續農業協會.
http://www.tari.gov.tw/霧峰總所/合理化施肥/永續農業/土壤資訊應用.htm
張尊國 (2002) 台灣地區土壤污染現況與整治政策分析. 中華永續農業協會.
http://old.npf.org.tw/PUBLICATION/SD/091/SD–B–091–021.htm
鄒裕民 (2007) 合理化施肥台灣農地污染與復育問題. 品種與技術 57: 51–55.
Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322: 93-103
Alcantara E, Romera FJ, Canete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45: 1893-1898
Allan AC, Maddumage R, Simons JL, Neill SO, Ferguson IB (2006) Heat-induced oxidative activity protects suspension-cultured plant cells from low temperature damage. Funct Plant Biol 33: 67-76
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399
Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28: 497-504
Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22: 111-180
Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13: 519-527
Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65: 277-284
Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosyn Res 60: 43-73
Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43: 83-116
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53: 1677-1682
Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45: 1259-1266
Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45: 1245-1250
Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45: 1251-1257
Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133: 692-704
Cakmak I, Marschner H (1992a) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98: 1222-1227
Cakmak I, Marschner H (1992b) Magnesium deficiency enhances resistance to paraquat toxicity in bean leaves. Plant Cell Environ 15: 955-960
Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41: 35-40
Cao W, Tibbitts TW (1992) Growth, carbon dioxide exchange and mineral accumulation in potatoes grown at different magnesium concentrations. J Plant Nutr 15: 1359-1371
Chao YY, Hsu YT, Kao CH (2009) Involvement of glutathione in heat shock- and hydrogen peroxide-induced cadmium tolerance of rice ( Oryza sativa L.) seedlings. Plant Soil 318: 37-45
Chaouia A, Mazhoudia S, Ghorbalb MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) Plant Sci 127: 139-147
Chen SL, Kao CH (1995) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16: 249-252
Chen SL, Kao CH (1995a) Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regul 17: 67-71
Chen SL, Kao CH (1995b) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16: 249-252
Chen SL, Kao CH (1995c) Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves. Plant Sci 104: 135-138
Chien HF, Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci 156: 111-115
Chien HF, Lin CC, Wang JW, Chen CT, Kao CH (2002) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul 36: 41-47
Chien HF, Wang JW, Lin CC, Kao CH (2001) Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regul 33: 205-213
Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168: 113-120
Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116: 1063-1072
Collins G, Nie XL, Saltveit ME (1995) Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot 46: 795-802
Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98: 29-36
De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142: 167-172
de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130: 698-708
Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52: 1101-1109
Droppa M, Terry N, Horvath G (1984) Effects of Cu deficiency on photosynthetic electron transport. PNAS 81: 2369-2373
Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS 93: 5624-5628
Fassett DW (1975) Cadmium: biological effects and occurrence in the enviroment. Annu Rev Pharmacol 15: 425-435
Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiol Plant 89: 271-276
Fischer ES, Lohaus G, Heineke D, Heldt HW (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plant 102: 16-20
Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66: 482-487
Fuhrer J (1982) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolus vulgaris L.). Plant Physiol 70: 162-167
Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14: 251-270
Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6: 263-267
Gong M, Chen BO, Li ZG, Guo LH (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158: 1125-1130
Greger M, Ögren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83: 129-135
Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY (2004) Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56: 795-809
Gunse B, Llugany M, Poschenrieder C, Barcelo J (1992) Growth, cell wall elasticity and plasticity in Zea mays L. coleoptiles exposed to cadmium. Suelo y Planta 2: 485-493
Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187
Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct Plant Biol 31: 539-549
Harrington HM, Alm DM (1988) Interaction of heat and salt shock in cultured tobacco cells. Plant Physiol 88: 618-625
Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116: 73-78
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys: 189-198
Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220: 541-549
Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220: 344-355
Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56: 2153-2161
Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice ( Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil DOI :10.1007/s11104-11008-19874-z
Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58: 3273-3283
Hou SM, Kao CH (1993) Characteristics of the induction of the ethylene by cadmium in detached rice leaves. Bot Bull Acad Sin 34: 163-168
Hsu YT, Kao CH (2003a) Accumulation of ammonium ion in cadmium tolerant and sensitive cultivars of Oryza sativa. Plant Growth Regul 39: 271-276
Hsu YT, Kao CH (2003b) Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regul 40: 147-155
Hsu YT, Kao CH (2003c) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26: 867-874
Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42: 227-238
Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124: 71-80
Hsu YT, Kao CH (2007a) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291: 27-37
Hsu YT, Kao CH (2007b) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300: 137-147
Hsu YT, Kao CH (2007c) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298: 231-241
Hsu YT, Kao CH (2008) Distinct roles of abscisic acid in rice seedlings during cadmium stress at high temperature. Bot Studies 49: 335-342
Hsu YT, Kuo MC, Kao CH (2006) Cadmium-induced ammonium ion accumulation of rice seedlings at high temperature is mediated through abscisic acid. Plant Soil 287: 267-277
Huang SZ, Huang XF, Lin XD, Zhang YS, Liu J, Fu JR (2004) Induction of chilling tolerance and heat shock protein synthesis in rice seedlings by heat shock. J Plant Physiol Mol Biol 30: 189-194
Hurng WP, Lur HS, Liao CK, Kao CH (1994) Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco leaves. J Plant Physiol 143: 102-105
Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56: 3207-3214
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45: 335-346
Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms: Effect of heavy metals. Aquat Bot 11: 67-77
Jaschke WD, Peuke AD, Pate JS, Hartung W (1997) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48: 1737-1747
Jennings P, Saltveit ME (1994) Temperature and chemical shocks induce chilling tolerance in germinating Cucumis sativus (cv. Poinsett 76) seeds. Physiol Plant 91: 703-707
John MK (1976) Interelationships between plant cadmium and uptake of some other elements from culture solutions by oats and lettuce. Environ Pollut 11: 85-95
Kadyrzhanova DK, Vlachonasios KE, Ververidis P, Dilley DR (1998) Molecular cloning of a novel heat induced/chilling tolerance related cDNA in tomato fruit by use of mRNA differential display. Plant Mol Biol 36: 885-895
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39: 1269-1280
Kang HM, Saltveit ME (2001) Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 113: 548-556
Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can J Bot 65: 729-735
Kochhar S, Kochhar VK (2005) Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings. Plant Sci 168: 921-929
Kuo MC, Kao CH (2004) Antioxidative enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45: 291-299
Kuznetsov VV, Rakitin VY, Zholkevich VN (1999) Effects of preliminary heat-shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiol Plant 107: 399-406
Kuznetsov VV, Rakutin VY, Borisova NN, Rotschupkin BV (1993) Why does heat shock increase salt resistance in cotton plants? Plant Physiol Biochem 31: 181-188
Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146: 47-57
Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897
Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J 210: 899-903
Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ, Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245: 283-290
Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32: 408-416
Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13: 2761-2775
Lin TS, Sucoff E, Brenner M (1986) Abscisic acid content and components of water status in leaves of Populus deltoids. Can J Bot 64: 2295-2298
Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631-677
Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31: 1606-1619
Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128: 1359-1367
Lopez F, Vansuyt G, Casse-Delbart F, Fourcroy P (1996) Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt-stressed Raphanus sativus plants. Physiol Plant 97: 13-20
Lu YK, Chen YR, Yang CM (1995) Influence of Fe- and Mg-deficiency on the thylakoid membranes of a chlorophyll-deficient ch5 mutant of Arabidopsis thaliana. Bot Bull Acad Sin 36: 175-179
Lurie S, Klein JD (1991) Acquisition of low-temperature tolerance in tomatoes by exposure to high temperature stre. J Amer Soc Hort Sci 116: 1007-1012
Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerance. Plant J 20: 89-99
Marschner H (1995) Mineral nutrition of higher plants. London, UK: Academic Press
McKenna IM, Chaney RL, Williams FM (1993) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut 79: 113-120
Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143: 1761-1773
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410
Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19
Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267: 21802-21807
Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5: 397-405
Mizrahi Y, Richmond AE (1972) Abscisic acid in relation to mineral deprivation. Plant Physiol 50: 667-670
Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. PNAS 83: 8059-8063
Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279-2286
Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. PNAS 87: 1406-1410
Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13: 165-175
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52: 464-469
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22: 867-880
Neumann D, Lichtenberger O, Tschiersh K, Nover L (1994) Heat shock proteins induce heavy-metal tolerance in higher plants. Planta 194: 360-367
Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129: 1872-1879
Orzech KA, Burke JJ (1988) Heat shock and the protection against metal toxicity in wheat leaves. Plant Cell Environ 11: 711-714
Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169: 239-246
Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154: 536-541
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734
Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326: 239-247
Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two Zinc transporters from rice. Plant Physiol 133: 126-134
Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109: 1141-1149
Rengel Z, Robinson DL (1989) Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. Plant Physiol 91: 1407-1413
Riga P, Anza M, Garbisu C (2005) Suitability of the antioxidative system as marker of magnesium deficiencyin Capsicum annuum L. plants under controlled conditions. Plant Growth Regul 46: 51-59
Rodecap KD, Tingey DT, Lee EH (1994) Iron nutrition influence on cadmium accumulation by Arabidopsis thaliana (L.) Heynh. J Environ Qual 23: 239-246
Rodriguez JL, Davies WJ (1982) The effects of temperature and ABA on stomata of Zea mays L. J Exp Bot 33: 977-987
Sabehat A, Lurie S, Weiss D (1996) The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruits. Plant Physiol 111: 531-537
Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52: 2115-2126
Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41: 105-130
Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M (2001) Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52: 145-151
Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27: 329-334
Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58: 47-69
Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53: 1351-1365
Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221: 56-65
Shakirova FM, Bezrukova MV, Shayakhmetov IF (1996) Effect of temperature shock on the dynamics of abscisic acid and wheat germ agglutinin accumulation in wheat cell culture. Plant Growth Regul 19: 85-87
Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15: 309-323
Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46: 1350-1357
Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63: 1-8
Smith GC, Brennan EG, Greenhalgh BJ (1985) Cadmium sensitivity of soybean related to efficiency in iron utilization. Environ Exp Bot 25: 99-106
Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79: 1044-1047
Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85: 85-89
Song SQ, Lei YB, Tian XR (2005) Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian J Plant Physiol 52: 793-800
Storozhenko S, Pauw PD, Van Montagu M, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis apx1 gene promoter. Plant Physiol 118: 1005-1014
Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146: 1231-1241
Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19: 535-540
Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577: 1-9
Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59: 761-770
Terry N, Ulrich A (1974) Effects of magnesium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol 54: 379-381
Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic 108: 7-14
Tewari RK, Kumara P, Tewaria N, Srivastavaa S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses—influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166: 687-694
Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223-1233
Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620
Volkov RA, Panchuk, II, Mullineaux PM, Schoffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61: 733-746
Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51: 173-212
Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244-252
Waters ER, Lee GJ, Vierling E (1996) Evolution structure and function of the small heat shock protein in plants. J Exp Bot 47: 325-338
Welch RM, Hart JJ, Norvell WA, Sullivan LA, Kochian LV (1999) Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var durum) seedling roots. Plant Soil 208: 243-250
Wintermans JF, de Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109: 448-453
Wojcik M, Tukendorf A (1999) Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol Plant 21: 99-107
Wong MK, Chuah GK, Koh LL, Ang KP, Hew CS (1984) The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environ Exp Bot 24: 189-195
Wu FB, Zhang G (2002) Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bull Environ Contam Toxicol 69: 219-227
Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Studies 50: 25-34
Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68: 505-512
Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25: 365-373
Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172: 646-654
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41275-
dc.description.abstract本論文係以水稻品種台中在來1號 (Oryza sativa L. cv. Taichung Native 1, TN1) 為材料,探討 (一) 缺鎂狀況下鎘對水稻幼苗之影響; (二) 熱休克處理與鎘處理對水稻幼苗葉片OsGR與OsAPX基因表現之影響。
缺鎂處理之水稻幼苗,其地上部、第二片葉片及根部之鎂含量明顯下降,但不影響蛋白質及葉綠素含量。以OsRab16A偵測ABA表現,缺鎂導致葉片Rab16A基因明顯表現,進一步以ELISA偵測ABA含量,缺鎂亦明顯使ABA含量增加。缺鎂葉片內H2O2以及ascorbate (ASC)含量增加,但不影響GSH含量。缺鎂同時也使抗氧化酵素superoxide dismutase (SOD)、glutathione reductase (GR)、ascorbate peroxidase (APX)以及catalase (CAT)活性增加。取自缺鎂幼苗之切離葉片可克服巴拉刈(paraquat, PQ)與鎘所引起之毒害。缺鎂幼苗亦可克服後續鎘處理所產生之毒害。不論是取自缺鎂幼苗之切離葉片或缺鎂幼苗,經鎘處理後,其葉片或根部鎘含量明顯增加,顯示缺鎂幼苗可克服後續鎘逆境毒害,不是藉由降低鎘之吸收。缺鎂幼苗根部經鎘處理後,降低鐵與鋅之含量,促進鐵轉運蛋白基因 (iron-regulated transporter, OsIRT1)及鋅轉運蛋白基因 (Zn-regulated transporter, iron (Fe)-regulated transporter-like protein, OsZIP1、OsZIP3)表現。此說明,水稻幼苗缺鎂後,鎘可能藉由鐵與鋅轉運通道輸送鎘,而使鎘吸收增加。
水稻幼苗經HS(45℃黑暗下,3小時)處理可降低後續鎘毒害。HS處理可誘導OsAPX2表現,同時增加GR與APX活性。HS亦可明顯誘導Oshsp17.3基因之表現。HS處理可導致H2O2累積,但其累積發生在OsAPX2與Oshsp17.3基因表現之後,此說明 HS處理所誘導之OsAPX2與Oshsp17.3基因表現並非受H2O2所調控。水稻幼苗經鎘處理可誘導葉片GR與APX活性上升,但不影響OsGR與OsAPX基因表現。因此,鎘處理所誘導之水稻幼苗葉片GR與APX活性上升,似乎與OsGR與OsAPX基因之轉錄無關。
zh_TW
dc.description.abstractRice (Oryza sativa L. cv. Taichung Native 1) seedlings were used to investigate (a) the effect of magnesium (Mg) deficiency on Cd toxicity and (b) the effect of heat shock (HS, 45℃, 3h, dark) and Cd treatment on the expression of OsGR and OsAPX genes.
The Mg deficiency treatment caused reduction in Mg concentration in shoots, second leaves, and roots, but had no effect on the content of chlorophyll and protein. The expression of OsRab16A and the accumulation of ABA were observed to be increased in Mg-deficient leaves. Rice seedlings grown under Mg deficiency conditions showed an increase in the contents of hydrogen peroxide and ascorbate, as well as the activities of SOD, APX, GR and CAT. Mg deficiency enhanced the tolerance of leaves or seedlings to subsequent Cd and/or paraquat (PQ) stress. However, Cd concentration could be increased in Mg-deficient seedlings or detached leaves than those in Mg-sufficient seedlings or detached leaves. Cd treatment resulted in a decrease in Fe and Zn concentrations and an increase in OsIRT1, OsZIP1 and OsZIP3 expression under Mg deficiency conditions, suggesting that iron-regulated and zinc transporters can be used for enhancing Cd uptake in roots of rice seedling grown under Mg deficiency conditions.
Rice seedlings pretreated with HS resulted in protection against subsequent of Cd stress. HS up-regulated the expression OsAPX2 and Oshsp17.3 and the activities of GR and APX. The expression of OsAPX2 and Oshsp17.3 induced by HS prior to the accumulation of H2O2. It appears that H2O2 is not involved in the regulation of HS-induced OsAPX2 and Oshsp17.3 expression. Cd treatment resulted in an increase in GR and APX activity, but had no effect on OsGR and OsAPX expression. Thus, the regulation of Cd-induced GR and APX activity is not under transcriptional control.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:15:06Z (GMT). No. of bitstreams: 1
ntu-98-R96621101-1.pdf: 1062813 bytes, checksum: 36aeae5f781d76ba304375ded661373c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 ii
致 謝 iii
中 文 摘 要 iiiv
英 文 摘 要 vi
縮 寫 字 對 照 xii

前  言 1
前 人 研 究 3
一、植物與氧化逆境 3
二、植物抗氧化系統 3
三、鎂與植物生長 5
四、鎘毒害 6
五、鎘與植物生長 7
六、植物吸收鎘之機制 8
七、綜合逆境 9
八、熱休克與逆境抵禦 9
九、熱休克蛋白與逆境抵禦 11
十、研究室過去相關文獻探討 11
十一、論文研究方向 12
材料方法 13
一、材料種植與處理 13
二、化學成份分析 15
三、酵素活性分析 22
四、基因表現之檢測 24
五、供試藥劑配置 26
六、統計分析 26
結  果 27
一、鎘對缺鎂水稻幼苗之影響 27
二、熱休克對水稻幼苗抗氧化酵素基因之影響 44
討  論 57
一、鎘對缺鎂水稻幼苗毒害之影響 57
二、熱休克與鎘處理對水稻幼苗誘導抗氧化酵素基因表現之影響 61
三、未來研究方向 64
參 考 文 獻 65
dc.language.isozh-TW
dc.subject水稻zh_TW
dc.subject鎂zh_TW
dc.subject鎘zh_TW
dc.subject氧化逆境zh_TW
dc.subjectriceen
dc.subjectoxidative stressen
dc.subjectMagnesiumen
dc.subjectcadmiumen
dc.title水稻幼苗鎘逆境生理之研究:鎂或熱休克之效應zh_TW
dc.titleStudies on the Cd stress of Rice Seedlings:Effects of Magnesium or Heat Shocken
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭石通(Shih-Tong Jeng),李澤民(Tse-Min Lee),王恆隆(Heng-Long Wang),洪傳揚(Dr. Chwan-Yang Hong)
dc.subject.keyword鎂,鎘,氧化逆境,水稻,zh_TW
dc.subject.keywordMagnesium,cadmium,oxidative stress,rice,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2009-06-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved