Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章(Soo-Chang Pei)
dc.contributor.authorChia-Hung Leeen
dc.contributor.author李家宏zh_TW
dc.date.accessioned2021-06-15T00:15:02Z-
dc.date.available2009-06-30
dc.date.copyright2009-06-30
dc.date.issued2009
dc.date.submitted2009-06-22
dc.identifier.citation[1] L. G. Brown, “A survey of image registration technique,” ACM Comput.Surv., vol. 24, no. 4, pp. 325–376, 1992.
[2] P. Vandewalle, S. Susstrunk, and M. Vetterli, “A Frequency Approach to Registration of Aliased Images with Application to Super-resolution,” EURASIP Journal on Applied Signal Processing, vol. 2006, p.p. 1-14.
[3] P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-Resolution From Unregistered and Totally Aliased Signals Using Subspace Methods,” IEEE Transactions on Signal Processing, vol. 55, no. 7, p.p. 3687-3703, Jul. 2007.
[4] P. Vandewalle, “Super-resolution from unregistered aliased images,” Ph.D. Thesis, 2006.
[5] A. Papoulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and Systems, vol. 24, no. 11, pp. 652–654, Nov. 1977.
[6] M. Unser and J. Zerubia, “Generalized sampling: Stablity and performance analysis,” IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 2941–2950, Dec. 1997.
[7] Bracewell, R. N., The Fourier Transform and Its Applications (3rd ed.), Boston: McGraw-Hill, 2000.
[8] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Prentice-Hall, 1996.
[9] P. Marziliano and M. Vetterli, “Reconstruction of irrgularly sampled discrete-time bandlimited signals with unknown sampling locations,” IEEE Transactions on Signal Processing, vol. 48, no. 12, pp. 3462–3471 Dec. 2000.
[10] M. Unser, “Sampling - 50 Years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569–587, Apr. 2000.
[11] H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Amer. Inst. Elect. Eng., vol. 47, pp. 617–644, 1928.
[12] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379–423, July 1948.
[13] E. T. Whittaker, “On the functions which are represented by the expansion of interpolating theory,” Proc. R. Soc. Edinburgh, vol. 35, pp.181–194, 1915.
[14] T. C. Hofner, “Boost your sampling rate with time-interleaved data converters,” Sensors Magazine, February 2001.
[15] V. Divi and G. Wornell, “Signal recovery in time-interleaved analog-to-digital converters,” in Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, May 2004, pp. 593–596.
[16] International Organization for Standardization, “ISO 12233:2000 - Photography - Electronic still picture cameras - Resolution measurements,” 2000.
[17] A. J. Jerri, “The Shannon sampling theorem - Its various extensions and applications: A tutorial review”, Proc. IEEE, vol. 65, pp. 1565-1596, Nov. 1977.
[18] H. D. Luke, “The origins of the sampling theorem,” IEEE Communications Magazine, pp. 106–108, Apr. 1999.
[19] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” in Advances in Computer Vision and Image Processing, T. S. Huang, Ed. JAI Press, 1984, vol. 1, pp. 317–339.
[20] S. Borman and R. Stevenson, “Spatial resolution enhancement of low-resolution image sequences - a comprehensive review with directions for future research,” University of Notre Dame, Tech. Rep., 1998.
[21] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, May 2003.
[22] B. Zitova and J. Flusser, “Image registration methods: a survey,” Imageand Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003.
[23] S. P. Kim and W.-Y. Su, “Subpixel accuracy image registration by spectrum cancellation,” in Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, Apr. 1993, pp. 153–156.
[24] H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 10, pp.2235–2243, October 2001.
[25] P. Vandewalle, S. S‥usstrunk, and M. Vetterli, “Double resolution from a set of aliased images,” in Proc. SPIE/IS&T Electronic Imaging 2004: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V, vol. 5301, Jan. 2004, pp. 374–382.
[26] D. Capel and A. Zisserman, “Computer vision applied to super-resolution,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 75–86, 2003.
[27] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[28] D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’88), pp. 742–746, Ann Arbor, Mich, USA, June 1988.
[29] J. Gluckman, “Gradient field distributions for the registration of images,” in Proceedings of IEEE International Conference on Image Processing (ICIP ’03), vol. 3, pp. 691–694, Barcelona, Spain, September 2003.
[30] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani,“Hierarchical model-based motion estimation,” in Proceedings of 2nd European Conference on Computer Vision (ECCV ’92), Lecture Notes in Computer Science, pp. 237–252, Santa Margherita Ligure, Italy, May 1992.
[31] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and transparent motions,” International Journal of Computer Vision, vol. 12, no. 1, pp.5–16, Feb. 1994.
[32] A. J. Patti,M. I. Sezan, and A.Murat Tekalp, “Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Transactions on Image Processing, vol. 6, no. 8, pp. 1064–1076, 1997.
[33] R. R. Schultz, L. Meng, and R. L. Stevenson, “Subpixel motion estimation for super-resolution image sequence enhancement,” Journal of Visual Communication and Image Representation, vol. 9, no. 1, pp. 38–50, 1998.
[34] M. Elad and A. Feuer, “Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images,” IEEE Transactions on Image Processing, vol. 6, no. 12, pp. 1646–1658, 1997.
[35] D. Gabor, “Theory of communication,” J. IEE (London), vol. 93, pp. 429-457, 1946.
[36] F. Hlawatsch, G.F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations”, IEEE Signal Proc. Mag., vol 9, April 1992. –P. 21-67.
[37] L. Cohen, “Time-Frequency distributions – A review”, Proc. IEEE, Vol. 77, No. 7, July 1989, pp. 941-981.
[38] S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1167–1183, Sept. 2002.
[39] M. G. Kang and S. Chaudhuri, Eds., IEEE Signal Processing Magazine, special issue on super-resolution, vol. 20, no. 3, May 2003.
[40] S. Farsiu, D. Robinson, and P. Milanfar. (2004) MDSP resolution enhancement software. [Online]. Available: http://www.soe.ucsc.edu/∼milanfar/SR-Soft ware.htm
[41] Mathworks (The), “Matlab function reference: griddata,” 2006. [Online]. Available: http://www.mathworks.com/access/helpdesk/help/techdoc/ref/grid
data.html
[42] M. van Ginkel, G. van Kempen, C. Luengo, and L. J. van Vliet. (2006) Dipimage, a scientific image processing toolbox for matlab. [Online]. Available: http://www.ph.tn.tudelft.nl/DIPlib/
[43] P. Vandewalle, P. Zbinden, S. S‥usstrunk, and M. Vetterli. (2005) Super-resolution software. [Online]. Available: http://lcavwww.epfl.ch/software/superresolution
[44] V. Velisavljevic, “Directionlets,” Ph.D. dissertation, Ecole Polytechnique F′ed′erale de Lausanne (EPFL), Lausanne, Switzerland, 2005, ph.D. Thesis EPFL 3358 (2005), School of Computer and Communication Sciences. [Online]. Available: http://library.epfl.ch/theses/?nr=3358
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41270-
dc.description.abstract當影像取樣的頻率太低時,影像就會發生混疊(aliasing)。傳統上,我們認為混疊是無用的並且使用抗混疊(anti-aliasing)濾波器將其消除。然而,這也消除了其中的資訊。事實上,混疊中也包含了影像高頻成分中的資訊,利用於超分辨率(super-resolution)的應用中。我們對同一個風景的一組影像擷取高頻資訊,並建立高解析度無混疊的影像。通常不同影像之間存在一些小位移,蘊含了對於風景些微不同的資訊。
超分辨率影像重建可以被表示成一個偏移量未知的多頻道取樣問題。在這篇論文中,我們專注在運算這些偏移量,因為這是高解析度重建的必要條件。Vandewalle, Susstrunk和Vetterli提出了一個基於傅立葉轉換的頻域方法。一對影像的配準參數可以利用頻譜中沒有發生混疊的部分求得。然而,這個方法無法用在完全混疊的信號上。在這篇論文中,我們利用加伯轉換(Gabor transform)將其延伸到時頻域。理論上,我們的演算法會有更好的結果,因為頻域方法只是時頻域方法的一個特例。實驗的結果也的確證明了我們的方法在處理真實信號和影像時,的確有比較好的表現。
zh_TW
dc.description.abstractAliasing in images occurs when an image is sampled at a too low sampling rate. Conventionally, we consider aliasing useless and cancel it with an anti-aliasing filter. However, this also destroyed the information. In fact, aliasing also conveys useful information about the high frequency content of the image, which is exploited in super-resolution applications. We use a set of input images of the same scene to extract such high frequency information and create a higher resolution aliasing-free image. Typically, there is a small shift between the different images, such that they contain slightly different information about the scene.
Super-resolution image reconstruction can be formulated as a multichannel sampling problem with unknown offsets. This thesis concentrates on the computation of these offsets, as they are an essential prerequisite for an accurate high resolution reconstruction. A frequency domain approach based on Fourier transform is proposed by Vandewalle, Susstrunk, and Vetterli. The registration parameters between a pair of signals are computed using the aliasing-free part of the spectrum. However, the method cannot work for totally-aliased signals. In this thesis, we extend the concept to the time-frequency domain, based on Gabor transform. Theoretically, our algorithm will perform better, since the frequency domain approach is simply a special case of the time-frequency domain approach. The experiment results show that the performance indeed increases when dealing with real signals and images.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:15:02Z (GMT). No. of bitstreams: 1
ntu-98-R96942050-1.pdf: 2409278 bytes, checksum: f5b3c9d9f29f1380a74ce51321f2b08f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents試委員會審定書 i
誌謝 iii
中文摘要 v
ABSTRACT vii
CONTENTS ix
LIST OF FIGURES xiii
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Resolution 2
1.2 Super-resolution imaging 3
1.3 Aliasing 6
1.4 Applications 7
1.5 Thesis outline 9
Chapter 2 Problem Setup 11
2.1 Sampling methods 11
2.2 Multichannel sampling 14
2.3 Aliasing 16
2.4 Super-resolution imaging 19
2.4.1 Registration 20
2.4.2 Reconstruction 23
2.5 Conclusions 25
Chapter 3 Shift Estimation Algorithms 27
3.1 Frequency domain approach 27
3.1.1 Shift property of Fourier transform 28
3.1.2 Shift estimation 29
3.1.3 Limits of frequency domain approach 33
3.2 Time-Frequency domain approach 33
3.2.1 Typical time-frequency representations 34
3.2.2 Shift property of Gabor transform 39
3.2.3 Shift estimation 40
3.2.4 Weighting enhancement 43
3.3 Conclusions 44
Chapter 4 Experimental Results 47
4.1 Registration performance comparison 47
4.1.1 Artificial sinusoidal signal 48
4.1.2 Acoustic signal 54
4.1.3 Speech signal 60
4.2 Super-resolution imaging 66
4.2.1 Text 69
4.2.2 Ruler 72
4.2.3 Pillar 75
4.3 Conclusions 78
Chapter 5 Conclusions and Future Works 79
5.1 Thesis conclusions 79
5.2 Future works 81
REFERENCE 83
dc.language.isoen
dc.subject加伯轉換zh_TW
dc.subject超分辨率zh_TW
dc.subject配準zh_TW
dc.subject混疊zh_TW
dc.subject時頻zh_TW
dc.subjecttime-frequencyen
dc.subjectSuper-resolutionen
dc.subjectGabor transformen
dc.subjectaliasingen
dc.subjectregistrationen
dc.title以時頻分析的方法實現超分辨率zh_TW
dc.titleA Time-Frequency Domain Approach to Super-resolutionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾建誠(Chien-Cheng Tseng),張豫虎(Yuh-Huu Chang),馮世邁(See-May Phoong)
dc.subject.keyword超分辨率,配準,混疊,時頻,加伯轉換,zh_TW
dc.subject.keywordSuper-resolution,registration,aliasing,time-frequency,Gabor transform,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2009-06-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved