Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝南瑞(Narn-Rueih Shieh)
dc.contributor.authorYu-Shain Chenen
dc.contributor.author陳鈺賢zh_TW
dc.date.accessioned2021-06-15T00:14:56Z-
dc.date.available2009-07-03
dc.date.copyright2009-07-03
dc.date.issued2009
dc.date.submitted2009-06-23
dc.identifier.citation[1] Billingsley, P., 1968. Convergence of probability measures. Wiley, New York.
[2] Bingham, N. H., Goldie, C. M., Teugels, J. L., Regular variation, Encyclopedia Math. Appl. 27 (Cambridge
University Press, Cambridge, 1987)
[3] Csörgö, M., Csörgö, S., Horváth, L., Mason, D., 1986. Weighted empirical and quantile process. Ann.
Probab. 14, 31-85.
[4] Csörgö, S., Mason, D., 1985. Central limit theorems for sums of extreme values. Math. Proc. Cam.
Phil. Soc. 98, 547-558.
[5] Davis, R., Resnick, S., 1984. Tail estimates motivated by extreme value theory. Ann. Statist. 12, 1467-
1487.
[6] de Haan, L., Resnick, S., 1996. Second-order regular variation and rates of convergence in extreme
value theory. Ann. Probab. 24, 97-124.
[7] de Haan, L., Resnick, S.,1998. On asymptotic normality of the Hill estimator. Stochastic Models, 14
(1998), 849-867.
[8] de Haan, L., Stadtmüller, U., 1996. Generalized regular varation of second order. J. Austral. Math.
Soc. Ser. A 61, 381-395.
[9] Durret, R., 2005. Probability: Theory and Examples. Tomson, Belmont, CA.
[10] Dress, H., de Han, L., and Resnick, S., How to make a Hill plot. Ann. statist., 28-1 (2000), 254-274.
[11] Einmahl, J., 1992. Limit theorems for tail processes with application to intermediate quantile estimation.
J. Statist. Plann. Inference 32, 137-145.
[12] Feller, W., 1971. An introduction to Probability Theory and its applications. Vol. II, 2nd edn. Wiley,
New York.
[13] Geluk, J., de Haan, L., Regular variation, Extensions and Tauberian Theorems, CWI Tracts, Vol. 40,
Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
[14] Geluk, J., de Haan, L., Resnick, S., Stâricâ, C., 1997. Second-order regular variation, convolution and
the central limit theorem, Stochastic Process. Appl., 69-2, 139-159.
[15] Mason, D., 1982. Laws of large numbers of extreme values. Ann. Probab., 10, 754-764.
[16] Resnick, S., 1986. Point process, regular variation and weak convergence. Adv Appl. Probab. 18,
66-138.
[17] Resnick, S., 1987. Extreme Values, Regular Variation, and Point processes. Springer, New York.
[18] Resnick, S., Hidden regular variation, second order regular variation and asymptotic independence.
Extremes 5(4), 303–336, (2002). ISSN 1386-1999.
[19] Resnick, S., 2006. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New
York.
[20] Resnick, S. and Stâricâ, C., 1995. Consistency of Hill’s estimatorfordependent data. J. Appl. Probab.
32 139–167.
[21] Resnick, S., Stâricâ, C., 1997. Smoothing the Hill estimator. Adv Appl. Probab. 29, 271-293.
[22] Resnick, S., 1997. Heavy tail modeling and teletraffic data. Ann. Statist. 25 1805–1869.
[23] Seneta, E., Regularly varying functions, Lecture Notes in Math. 508 (Springer, Berlin, 1976).
[24] Vervaat, W., Functional central limit theorems for process with positive drift and their inverses, Z.
Wahrscheinlichkeitstheor. Verw. Gebiete, 23 (1972), 245-253.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41261-
dc.description.abstract本論文首先探討一階正規變化函數的存在性與其精確的極限函數,為了統計上之應用我們更進一
步討論廣義型的一階正規變化,在是當的假設下,其極限仍有精確的型態。當處理尾估計量之極
值理論和漸進常態之行為時,我們則考慮一個較正規變化更為精細的情形-二階正規變化。對於我
們於機率上之主要應用,我們考慮另一特殊二階正規變化的情形。並且令此函數f為某分配之尾
分布函數,即f = 1F,其中F為某分布函數。由於此種f為單調函數,當其滿足二階正規變化
時,其反函數仍有相對應等價不同指數的二階正規變化結果。
接著我們給幾個特殊二階正規變化的例子,如Log Gamma分配、Hall/Wesis類型的分
配、Stable密度函數、柯西分布等等。我們也給了一個不符合二階正規變化性質的例子,
即Pareto分配。
對於分別滿足一階及二階正規變化之尾分布,我們討論對於具有一階正規變化之尾分布其和
仍然保有一階正規變化的特性;當尾分布函數滿足特殊二階正規變化時,而兩個獨立同分配非負
隨機變數之最大值仍然保有特殊二階正規變化的性質,但這兩種情形下其指數並不一定維持不
變。
我們也討論尾經驗過程的中央極限行為與特殊二階正規變化的關係,並且利用此結果去得
到Hill過程的漸進行為。藉此我們可以得到Hill估計量漸進常態的結果,此結果可於統計上建立正
規變化尾分布之指數的信賴區間。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T00:14:56Z (GMT). No. of bitstreams: 1
ntu-98-R96221017-1.pdf: 552113 bytes, checksum: 6299561f4b63f85adf6dfedc880c6ae3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 INTRODUCTION 1
2 REGULAR VARIATION OF FIRST-ORDER AND SECOND-ORDER 5
2.1 First-order Regular Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Specialized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Generalized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Second-order Regular Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Generalized Second-order Regular Variation . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Specialalized Second-order Regular Variation . . . . . . . . . . . . . . . . . . . 10
2.3 Second-order Regular Variation of Tail Distributions . . . . . . . . . . . . . . . . . . . . 11
3 EXAMPLES 13
4 CONVOLUTION AND MAXIMA 17
4.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 RELATED FUNCTION SPACES AND PROBABILITY THEORY 21
5.1 The Space D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 The Skorohod Topology on D[0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Simple Consequences of Skorohod Metric on D[0,1] . . . . . . . . . . . . . . . . 24
5.1.3 The Space D[0,¥) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.4 The Space D(0,¥] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Methods of Showing Weak Convergence in D[0,1] . . . . . . . . . . . . . . . . . 27
5.2.3 Methods of Showing New Weak Convergence from Old . . . . . . . . . . . . . . 28
6 SECOND-ORDER REGULAR VARIATION AND WEAK CONVERGENCE OF TAIL EMPIRICAL
MEASURES IN Space D 30
6.1 Tail Empirical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Weak Convergence of Tail Empirical Measures with First-order Regularly Varying Tail . . 32
6.4 Weak Convergence of Tail Empirical Measure with Second-order Regularly Varying Tail . 36
7 ASYMPTOTIC BEHAVIOR OF HILL PROCESS 38
7.1 Hill Estimator and Hill Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Basic Convergence Based on Distributions of Second-order Regularly Varying Tail . . . . 39
7.3 Asymptotic Behavior of Hill Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8 CONCLUSION ..........49
Reference 50
dc.language.isoen
dc.subject二階正規變化zh_TW
dc.subject弱收斂zh_TW
dc.subjectweak convergenceen
dc.subjectsecond-order regular variationen
dc.title二階正規變化函數及其在機率上之應用zh_TW
dc.titleSecond-order regular variation and its application in probabilityen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男(Jenn-Nan Wang),彭柏堅(Ken Palmer)
dc.subject.keyword二階正規變化,弱收斂,zh_TW
dc.subject.keywordsecond-order regular variation,weak convergence,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2009-06-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
539.17 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved