Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41179
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鴻昌
dc.contributor.authorKuen-Lin Chenen
dc.contributor.author陳坤麟zh_TW
dc.date.accessioned2021-06-14T17:22:04Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation[1] P. Carelli and V. Pizzella, Supercond. Sci. Technol., vol. 5, 407 (1992)
[2] SeungKyun Lee, W. R. Myers, H. L. Grossman, H.-M. Cho, Y. R. Chemla, and John Clarke, Appl. Phys. Lett., 81, 3094 (2002)
[3] K. Enpuku, K. Soejima, T. Nishimoto, H. Tokumitsu, H. Kuma, N. Hamasaki, and K. Yoshinaga, J. Appl. Phys., 100, 054701 (2006)
[4] J. J. Chieh, S. Y. Yang, Z. F. Jian, W. C. Wang, H. E. Horng, H. C. Yang, and Chin-Yih Hong, J. Appl. Phys., 103, 014703 (2008)
[5] C. C. Wu, B. F. Hong, B. H. Wu, S. Y. Yang, and H. E. Horng, Appl. Phys. Lett., 90, 054111 (2007)
[6] Ya. S. Greenberg, Rev. Mod. Phys., 70, 175 (1998)
[7] K. Schlenga, R. McDemolt, John Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, Appl. Phys. Lett., 75, 3695 (1999)
[8] Shu-Hsien Liao, Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, J. Appl. Phys., 102, 033914 (2007)
[9] W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., J. Phys. D: Appl. Phys., vol. 30, pp. 293-323 (1997)
[10] J. T. Jeng, H. E. Horng, and H. C. Yang, Physica C, 368, 105 (2002)
[11] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, Appl. Phys. Lett., 66, 1138 (1995)
[12] T. Morooka, S. Nakayama, A. Odawara, M. Ikeda, S. Tanaka, K. Chinone, IEEE Trans. Appl. Supercond., vol. 9, 3491 (1999)
[13] J. Clarke, IEEE Trans. Mag., vol. 19, pp. 288-294 (1983)
[14] S. Linzen, A. Chwala, V. Schultze, M. Schulz, T. Schuler, R. Stolz, N. Bondarenko, H.-G. Meyer, IEEE Trans. Appl. Supercond., vol. 17, pp. 750-755 (2007)
[15] M. Podt, L. Gottardi, A. de Waard, G. Frossati and J. Flokstra, Supercond. Sci. Technol., 16, 1531 (2003)
[16] T.M. Lanting, Hsiao-Mei Cho, John Clarke, W.L. Holzapfel, Adrian T. Lee, M. Lueker, P.L. Richards, Matt A. Dobbs, Helmuth Spieler and A. Smith, Appl. Phys. Lett., 86, 112511 (2005)
[17] Matti Hämäläinen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila, and Olli V. Lounasmaa, Rev. Mod. Phys., 65, 413 (1993)
[18] Yi Zhang, IEEE Trans. Appl. Supercond., 11, 1038 (2001)
[19] M. J. Zani, J. A. Luine, G. S. Lee, J. M. Murduck, R. Ha, M. J. Levis, R. A. Davidheiser, and L. R. Eaton, IEEE Trans. Mag., MAG-27, 2557 (1991)
[20] Yi Zhang, H. –M. Mück, K. Herrmann, J. Schubert, W. Zander, A. I. Braginski, and C. Heiden, Appl. Phys. Lett., 60, 645 (1992)
[21] Ji-Cheng Chen, Kuen-Lin Chen, Hong-Chang Yang, Chiu-Hsien Wu, and Herng-Er Horng, Appl. Phys. Lett., 90, 153504 (2007)
[22] 陳智城, 國立台灣大學物理系博士論文 (2006)
[23] Josephson, B. S., Phys. Lett., 1, 251 (1962)
[24] Anderson, P. W. and J. M. Rowell, Phys. Rev. Lett., 10, 230 (1963)
[25] F. London, Superfluids, Wiley, New York (1950)
[26] V. Ambegaokar, and B. I. Halperin, Phys. Rev. Lett., 22, 1364 (1969)
[27] K. Enpuku, G. Tokita, T. Maruo, and F. Minotani, J. Appl. Phys., 78, 3498 (1995)
[28] P. Dutta, and P. M. Horn, Rev. Mod. Phys., 53, 497 (1981)
[29] C. T. Rogers, and R. A. Buhrman, Phys. Rev. Lett., 53, 1272 (1984)
[30] R. H. Koch, J. Clarke, W. M. Goubau, J. M. Martinis, C. M. Pegrum, and D. J. Van Harlingen, J. Low. Temp. Phys., 51, 207 (1983)
[31] E. Danster, S. Tanaka, and J. Clarke, Appl. Phys. Lett., 70, 2037 (1997)
[32] Koichi Yokosawa, S. Kuriki, S. Hirano, H. Oyama, D. Suzuki, and Keiji Tsukada, J. Appl. Phys., 90, 4049 (2001)
[33] M. S. Dilorio, K. Yang, S. Yoshizumi, S. G. Haupt, D. Haran, R. H. Koch, F. P. Milliken, J. R. Rozen, D. K. Lathrop, S. Kumar, H. S. Trammell, IEEE Trans. Appl. Supercond., vol. 9, 4428 (1999)
[34] R.H. Koch, J.Z. Sun, V. Folietta, and W.J. Gallagher, Appl. Phys. Lett., 67, 709 (1995)
[35] P. Selders and R. Wördenweber, Appl. Phys. Lett., 76, 3277 (2000)
[36] R. Cantor, “dc SQUID: design, optimization and practical applications,” in SQUID Sensors: Fundamentals, Fabrication, and Applications, H. Weinstock ed. Dordrecht: Kluwer, pp. 179-233 (1999)
[37] M. B. Ketchen, IEEE Trans. Mag., vol. 23, 1650 (1987)
[38] J. M. Jaycox and M. B. Ketchen, IEEE Trans. Mag., vol. 17, 400 (1981)
[39] S. Knappe, D. Drung, T. Schurig, H. Koch, M. Klinger, J. Hinken, Cryogenics, 32, 881 (1992)
[40] V. Zakosarenko, F. Schmidl, H. Schneidewind, L. Dorrer, P. Seidel, Appl. Phys. Lett., 65, 779 (1994)
[41] A. J. Millar, E. J. Romans, C. Carr, E. Eulenburg, G. B. Donaldson, P. Maas, C. M. Pegrum, Appl. Phys. Lett., 76, 2445 (2000)
[42] Soon-Gul Lee, Yunseok Hwang, and Byung-Chang Nam, Jin-Tae Kim and In-Seon Kim, Appl. Phys. Lett., 73, 2345 (1998)
[43] Y. Hwang, J. R. Ahn, S. G. Lee, J. T. Kim, I. S. Kim, Y. K. Park, IEEE Trans. Appl. Supercond., vol. 11, 1343 (2001)
[44] R. H. Koch, J. R. Rozen, J. Z. Sun, W. J. Gallagher, Appl. Phys. Lett., 63, 403 (1993)
[45] Y. Tavrin, Y. Zhang, W. Wolf, A. I. Braginski, Supercond. Sci. Technol., 7, 265 (1994)
[46] D. Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys. Rev. Lett., 61, 219 (1988)
[47] H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev., 53, 14586 (1996)
[48] T. Minotani, S. Kawakami, and K. Enpuku, Jpn. J. Appl. Phys., 37, L718 (1998)
[49] H. Hilgenkamp, J. Mannhart, Rev. Mod. Phys., 74, 485 (2002)
[50] 陳坤麟, 國立台灣大學物理系碩士論文 (2001)
[51] K. L. Chen, J. H Chen, H. E. Horng and H. C Yang, Physica C, 372, 1078 (2002)
[52] Neeraj Khare, Handbook of High-Temperature Superconductor Electronics, Dekker, New York, pp. 233–277 (2003)
[53] H. Koch, in Superconducting Quantum Electronics, edited by V. Kose, Springer-Verlag, Berlin, pp. 128–150 (1989)
[54] H. Itozaki, S. Tanaka, H. Toyoda, T. Hirano, Y. Haruta, M. Nomura, T. Saijou, and H. Kado, Supercond. Sci. Technol., 9, A38 (1996)
[55] K. Enpuku, M. Hotta, and A. Nakahodo, Physica C, 357–360, 1462 (2001)
[56] V. Schultze, V. Zakosarenko, R. IJsselsteijn, J. Ramos, and H.-G. Meyer, IEEE Trans. Appl. Supercond., 9, 3279 (1999)
[57] C. H. Wu, U. C. Sou, J. C. Chen, K. L. Chen, and H. C. Yang, Appl. Phys. Lett., 88, 102504 (2006)
[58] Charles S. Walker, Capacitance, Inductance and Crosstalk Analysis, Artech House, Norwood, MA, pp. 125–152 (1990)
[59] J. H. Chen, K. L. Chen, H. W. Yu, M. J. Chen, C. H. Wu, J. T. Jeng, H. E. Horng, and H. C. Yang, IEEE Trans. Appl. Supercond., 11, 1110 (2001)
[60] Kuen-Lin Chen, C. H. Wu, J. C. Chen, and H. C. Yang, J. H. Chen, and H. E. Horng, Appl. Phys. Lett., 89, 102501 (2006)
[61] A. Eulenburg, E. J. Romans, C. Carr, A. J. Millar, G. B. Donaldson, and C. M. Pegrum, Appl. Phys. Lett., 75, 2301 (1999)
[62] A. Tsukamoto, T. Fukazawa, and K. Takagi, K. Yokosawa, D. Suzuki, and K. Tsukada, Appl. Phys. Lett., 79, 4405 (2001)
[63] C. Carr, E. J. Romans, A. J. Millar, A. Eulenburg, G. B. Donaldson, and C. M. Pegrum, IEEE Trans. Appl. Supercond., 11, 1367 (2001)
[64] R. Landauer and J. J. Hall, Science, 160, 736 (1968)
[65] S. Sakai, Phys. Rev. B, 47, 9042 (1993)
[66] J. Mannhart, Mod. Phys. Lett. B, 6, 555 (1992)
[67] J. Mannhart, Supercond. Sci. Technol., 9, 49 (1996)
[68] J. Mannhart, D. G. Schlom, J. G. Bednorz, and K. A. Müller, Phys. Rev. Lett., 67, 2099 (1991)
[69] X. X. Xi, Q. Li, C. Doughty, C. Kwon, S. Bhattacharya, A. T. Findikoglu, and T. Venkatesan, Appl. Phys. Lett., 59, 3470 (1991)
[70] T. Fujii, K. Sakuta, T. Awaji, K. Matsui, T. Hirano, Y. Ogawa and T. Kobayashi, Jpn. J. Appl. Phys., 31, L612 (1992)
[71] G. Brorsson, Yu. Boikov, Z.G. Ivanov and T. Claeson, IEEE Trans. Appl. Supercond., 3, 2922 (1993)
[72] Kevin A. Parendo, K. H. Sarwa B. Tan, A. Bhattacharya, M. Eblen-Zayas, N. E. Staley, and A. M. Goldman, Phys. Rev. Lett., 94, 197004 (2005)
[73] D. Matthey, N. Reyren, J.-M. Triscone, and T. Schneider, Phys. Rev. Lett., 98, 057002 (2007)
[74] J. Chen, T. Yamashita, H. Sasahara, H. Suzuki, H. Kurosawa, and Y. Hirotsu, IEEE Trans. Appl. Supercond., 1, 102 (1991)
[75] Z. G. Ivanov, E. A. Stepantsov, A. Y. Tzalenchuk, R. I. Shekhter, and T. Claeson, IEEE Trans. Appl. Supercond., 3, 2925 (1993)
[76] Z. W. Dong, V. C. Matijasevic, P. Hadley, S. M. Shao, and J. E. Mooij, IEEE Trans. Appl. Supercond., 5, 2879 (1995)
[77] B. Mayer, J. Mannhart, and H. Hilgenkamp, Appl. Phys. Lett., 68, 3031 (1996)
[78] Charles P. Poole, Jr., Horacio A. Farach, Richard J. Creswick, Superconductivity, Academic Press, California, pp. 52 (1995)
[79] K. Nakajima, K. Yokota, J. Chen, H. Myoren, and T. Yamashita, Jpn. J. Appl. Phys., 33, L934 (1994)
[80] J. Clarke and A. I. Braginski, The SQUID handbook: Vol. I Fundamentals and Technology of SQUIDs and SQUID Systems, WILEY-VCH Verlag GmbH & Co. KGaA, pp. 49 (2004)
[81] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Phys. Rev. Lett., 12, 159 (1964)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41179-
dc.description.abstractAfter the discovery of high-transition-temperature superconducting (HTS) material, many HTS superconducting-quantum-interference-device (SQUID) systems have been constructed and applied to different applications such as nondestructive evaluation (NDE), scanning SQUID microscope (SSM), magnetocardiography (MCG), magnetoencephalography (MEG), low field nuclear magnetic resonance (NMR), etc. For practical applications, a multichannel system is more useful and powerful, especially in biomagnetic research. A multichannel system could perform a large area measurement and reduce measuring time. Alternatively, a multichannel system offers the possibility for the measurement of the gradient of magnetic field.
In this work, I try to develop the new design of the high-Tc dc SQUID magnetometer to increase the practicability of SQUID. The basic physics of the dc SQUID magnetometer and gradiometer are introduced in the chapter 1. Before fabricating a high-Tc SQUID, it is very important to prepare the superconducting thin film with good quality. We use the pulsed laser deposition (PLD) to deposit the YBa2Cu3O7-δ thin film. The technique of PLD, the SQUID fabrication steps and the measurement processes are shown in the chapter 2.
  In the Chapter 3, the multifunctional high-Tc directly coupled SQUID magnetometers will be presented. This design contains four magnetometers on a chip. Moreover, these magnetometers can be used to construct four kinds of first-order electronic planar gradiometers or two kinds of second-order electronic planar gradiometers by using analog subtracting electronic circuits. The noise spectra of each magnetometer, two first-order electronic planar gradiometers, and a second-order planar gradiometer are measured.
Next, we design two first-order planar gradiometers on a chip. The gradiometer is more stable than the magnetometer in a noisy environment. These two first-order planar gradiometers also can be connected to a second-order electronic planar gradiometer by using analog subtracting electronic circuits. The performance and the noise spectra of this device are shown in the chapter 4.
Electric field modulated devices have been developed intensively in the semiconductor. Referring to the structure of the semiconductor field effect transistor (FET), we design a three terminal-like SQUID to investigate the electric field effect in SQUID. We find that the electric filed effect can affect the performance of SQUID. The details and the results of this experiment will be exhibited in the chapter 5.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:22:04Z (GMT). No. of bitstreams: 1
ntu-97-D92222016-1.pdf: 2211042 bytes, checksum: eeba738fab6ac80f941541739b8213f4 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1. Introduction....................................1
1.1 Josephson Junction and dc SQUID........................2
1.1.1 Josephson Junction...................................2
1.1.2 dc SQUID.............................................6
1.1.3 The Noise in dc SQUID................................8
1.2 dc SQUID Magnetometer and Gradiometer.................10
1.2.1 High-Tc Directly Coupled dc SQUID Magnetometer......11
1.2.2 High-Tc dc SQUID Planar Gradiometer and Electronic Gradiometer...............................................13
Chapter 2. SQUID Fabrication Processes....................17
2.1 YBa2Cu3O7-δ Thin Film Deposition.....................17
2.1.1 Substrates for YBa2Cu3O7-δ Thin Film...............17
2.1.2 Pulsed Laser Deposition (PLD).......................19
2.1.3 Gold Contact........................................22
2.2 Pattern...............................................22
2.3 SQUID Characterization................................24
Chapter 3. Multifunctional High-Tc Directly Coupled dc SQUID
Magnetometers on a Chip...................................26
3.1 Layout of Four SQUID Magnetometers on a SrTiO3 Bicrystal Substrate.......................................27
3.2 Experimental Results..................................31
3.2.1 The Performance of SQUID Magnetometers..............31
3.2.2 The Performance of First-Order and Second-Order Electronic Planar Gradiometers............................39
3.2.3 Magnetic Quadrupole Measurement.....................43
3.3 Summary...............................................44
Chapter 4. Dual High-Tc First-Order Planar Gradiometers on a Chip....................................................46
4.1 Layout of Two First-Order dc SQUID Planar Gradiometers on a SrTiO3 Bicrystal Substrate...........................47
4.2 Experimental Results..................................49
4.2.1 The Performance of Gradiometers.....................49
4.2.2 The Balance of Gradiometer..........................55
4.3 Summary...............................................59
Chapter 5. Electric Field Controlled High-Tc SQUID Magnetometer..............................................60
5.1 Superconducting Field Effect Transistor (SuFET).......61
5.2 Josephson Junction Field Effect Transistor (JoFET)....64
5.3 Electric Field Modulated SQUID magnetometer (EF-SQUID)....................................................65
5.3.1 Layout of EF-SQUID..................................65
5.3.2 Experimental Results of the JoFET...................68
5.3.3 Experimental Results of the EF-SQUID................71
5.4 Summary...............................................76
Chapter 6. Conclusion.....................................78
References................................................81
dc.language.isoen
dc.title多功能高溫超導量子干涉元件磁量計與梯度計之製作與特性研究zh_TW
dc.titleFabrication and Characterization of Multifunctional High-Tc Superconducting Quantum Interference Device Magnetometers and Gradiometersen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭義雄,楊宗哲,齊正中,莊振益,洪姮娥,鄭振宗
dc.subject.keyword高溫超導量子干涉元件,磁量計,梯度計,超導場效電晶體,約瑟芬結場效電晶體,zh_TW
dc.subject.keywordsuperconductor,SQUID,magnetometer,gradiometer,SuFET,JoFET,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved