Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳金次
dc.contributor.authorBing-Kun Tsaien
dc.contributor.author蔡秉昆zh_TW
dc.date.accessioned2021-06-14T17:20:57Z-
dc.date.available2018-07-24
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citationReferences
[1] J-T Chen and W-S Huang, Convexity of capillary surfaces in the outer space, Invent. Math. 67(1982), p.253-259.
[2] R. Courant and D. Hilber, Methods of mathematical physics, Vol.II, Inter-science, New York, 1962.
[3] R. Finn, A subsidiary variational problem and existence criteria for capillary surfaces, J. Reine Angew. Math. 353(1984), p.196-214.
[4] R. Finn, Equilibrium capillary surfaces, Grundlehren Math. Wiss. Vol. 284, Springer-Verlag, New York, 1986.
[5] R. Finn and J-F Hwang, On the comparison principle for capillary surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 36(1989) No.1 p131-134.
[6] E. Giusti, Generalized solutions of mean curvature equations, Pacific J. Math. 88(1980), p.297-321.
[7] J-F Hwang, Comparison principle and Liouville theorems for prescribed mean curvature equations in unbounded domains, Annali Scuola Norm. Sup. Pisa. IV15(1988) p.341-355.
[8] J-f Hwang, How many theorems can be derived from a vector function - on uniqueness theorems for the minimal surface equation, Taiwanese J. Math. Vol.7(2003), No. 4, pp.513-539.
[9] C-C Lee, A uniqueness theorem for the minimal surface equation on an un-bounded domain in R2 Pacific J. Math. 177(1977), No.1 p103-107.
[10] U. Massari, Frontere orientate di curvature media assegnata in Lp, Rend. Sem. Tat. Univ. Padova 53(1975), p.37-52.
[11] M. Miranda, superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa. (4) 4(1977), p.313-322
[12] J. C. C. Nitsche, On new resulls in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71(1965), p.195-270.
[13] R. Osserman, Asurvey of minimal surfaces, Ven Nostrand-Reinhold. New York, 1969.
[14] L. F. Tam, On the uniqueness of capillary surfaces without gravity over an infinte strip, Indana Univ. Math. J. 36(1987) p.79-89.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41163-
dc.description.abstract我們考慮在無界扇形域上,給定邊界接觸角的最小曲面方程式。首先,我們對於方程式線性解的存在性,給出一個充要條件。其次,透過「吹」及「吸」兩種過程,我們研究方程式解在原點及無窮遠處的行為。最後,我們論述方程式解在邊界上是線性的,同時證明解是一個平面。zh_TW
dc.description.abstractWe consider the minimal surface equation in an infinite sector domain with given capillary boundary conditions.First, we give a necessary and sufficient conditions for the existence of the linear solution. Second, we study the behavior of the solutions of the minimal surface equation at the origin and at the infinite by using the blow up and the sip in process. Finally, we claim that the solution is linear on the boundary and conclude that it is a plane.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:20:57Z (GMT). No. of bitstreams: 1
ntu-97-R95221006-1.pdf: 213023 bytes, checksum: b5746c5e02e5ed59132384b4bc29cac2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
口試委員會審定書 i
Abstract in Chinese ii
Abstract in English iii
1 Introduction 1
2 The Necessary and Sufficient Conditions for the Existence of a Linear Solution 3
3 The Behavior of u at the Origin and the Infinity. 4
4 The Behavior of u on the Boundary 7
5 u is linear 11
References 12
dc.language.isoen
dc.subject最小曲面zh_TW
dc.subject偏微分方程zh_TW
dc.subject邊界接觸角zh_TW
dc.subject扇形域zh_TW
dc.subject無界域zh_TW
dc.subjectunbound domainen
dc.subjectPDEen
dc.subjectminimal surfaceen
dc.subjectcapillary boundary conditionen
dc.subjectsector domainen
dc.title邊界接觸角給定下最小曲面在無界扇形域上的唯一定理zh_TW
dc.titleOn the Uniqueness of Minimal Surface Equation in an Infinite Sector Domain
with Capillary Boundary Condition
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王藹農,黃振芳
dc.subject.keyword最小曲面,無界域,扇形域,邊界接觸角,偏微分方程,zh_TW
dc.subject.keywordminimal surface,unbound domain,sector domain,capillary boundary condition,PDE,en
dc.relation.page13
dc.rights.note有償授權
dc.date.accepted2008-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
208.03 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved