Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章(Soo-chang Pei)
dc.contributor.authorShu-Ping Huen
dc.contributor.author胡書萍zh_TW
dc.date.accessioned2021-06-14T17:20:07Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation[1] V. R. Algazi, G. E. Ford, and R. Potharlanka, “Directional interpolation of images based on visual properties and rank order filtering,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 4, 1991, pp.3005–3008.
[2] S. W. Lee and J. K. Paik, “Image interpolation using adaptive fast B-spline filtering,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, 1993, pp. 177–180.
[3] J. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE, vol.2416, pp. 144–151, 1995.
[4] S. Carrato, G. Ramponi, and S. Marsi, “A simple edge-sensitive image interpolation filter,” in Proc. IEEE Int. Conf. Image Processing, vol. 3,1996, pp. 711–714.
[5] B. Ayazifar and J. S. Lim, “Pel-adaptive model-based interpolation of spatially subsampled images,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 3, 1992, pp. 181–184.
[6] B. S. Morse and D. Schwartzwald, “Isophote-based interpolation,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, 1998, pp. 227–231.
[7] K. Ratakonda and N. Ahuja, “POCS based adaptive image magnification,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, 1998, pp.203–207.
[8] D. Calle and A. Montanvert, “Superresolution inducing of an image,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, 1998, pp. 232–235.
[9] K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still images,” IEEE Trans. on Image Processing, vol. 4, pp.285–295, Mar. 1995.
[10] J. Allebach and P. W. Wong, “Edge-directed interpolation,” in Proc.IEEE Int. Conf. Image Processing, vol. 3, 1996, pp. 707–710.
[11] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Processing, vol. 10, pp. 1521–1527, Oct.2001.
[12] D. A. Florencio and R. W. Schafer, “Post-sampling aliasing control for natural images,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 2, 1995, pp. 893–896.
[13] F. Fekri, R. M. Mersereau, and R.W. Schafer, “A generalized interpolative VQ method for jointly optimal quantization and interpolation of images,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, 1998, pp. 2657–2660.
[14] Broomhead, D. and Lowe,D, “Multivariable functional interpolation and adaptive networks” Complex Systems 2,1988 ,pp.321-355 ,.
[15] F. Girosi, M. Jones, T. Poggio, “Regularization theory and neural networks architectures”, Neural Comput. 7 (2) (1995) 219–269.
[16] M.J.L. Orr, “Introduction to radial basis function networks”, Technical Report Center for Cognitive Science, University of Edinburgh, 1996.
[17] Yoshinori Abe and Youji Jiguni, “Fast computation of RBF coefficients for regularly sampled inputs” Electronics Letters 39 (2003) 543-544
[18] Yoshinori Abe and Youji Jiguni,, “Fast computation of RBF coefficients using FFT”, Signal Processing 86 (2006) 3264–3274
[19] Yoshinori Abe and Youji Jiguni, “Interpolation capability of the periodic radial basis function”, Division of Systems Science and Applied Informatics, Dept. of Systems Innovation Osaka University Toyonaka, Japan
[20] Youngjoon Cha and Seongjai Kim, The Error-Amended Sharp Edge (EASE) Scheme for Image Zooming , IEEE Trans. Image Processing vol. 16,No 6 pp 1496-1505 June 2007
[21] 梁勝富、陳宏鳴、王敘全, “A spatial and directional Hybrid Approach for Image Interpolation ”, 影像與識別 vol.13 ,No.3 pp.34-45 2007
[22] Friehelm Schwenker, Hans A. Kestler and Günther Palm ,“Three learning phases for radial basis function network”, Neural Networks 14 pp 439-458 2001
[23] Felipe Miguel Aparicio Acosta, “Radial basis function and related models: An overview”, Signal processing 45 pp 37-58 1995
[24] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for digital communications channel equalization using radial basis function networks”, IEEE Trans. Neural Networks, vol. 4, pp. 570–579, 1993.
[25] B. Mulgrew, “Applying radial basis functions”, IEEE Signal Processing Mag., vol. 13, no. 2, pp. 50–65, 1996
[26] J. Lee, C.B. Beach, N. Tepedelenlioglu, “A practical radial basis function equalizer”, IEEE Trans. Neural Networks 10 (1999) 450–455.
[27] , , “Theoretical derivation of minimum mean square error of RBF based equalizer” Signal Processing 87 (2007) 1613–1625
[28] T.Sigitani, Y.Iiguni,and H.Maeda, “Image interpolation for progressive transmission by using radial basis function networks”, IEEE Trans. Neural Networks, vol. 10, pp. 381-390, 1999.
[29] P.Thevenaz, T.Blu, and M.Unser, Image interpolation and resampling, in Handbook of Medical Imaging, Processing and Analysis, Academic Press, San Diego Ca, 2000, pp. 393-420.
[30] M.Unser, A.Aldroubi, M.Eden, “Polynomial spline signal approximations: filter design and asymptotic equivalence with Shannon's sampling theorem.” IEEE Trans. on Information Theory, 1992, 38, (1), pp. 95-103.
[31] N. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech and Video. Englewood Cliffs, NJ: Prentice-Hall,1984
[32] R. C. Gonzolez, R. E. Woods, Digital Image Processing second edition, Prentice Hall, 2002.
[33] 吳上立/林宏墩編譯,“C語言數位影像處理”,全華出版社
[34] William. K. Pratt, Digital Image Processing, third edition, John Wiley & Sons, 2001
[35] S. G. Mallat, A Wavelet Tour of Signal Processing. New York: Academic, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41149-
dc.description.abstract影像內插是將一張低解析度的影像轉為一個高解析度影像的過程,影像內插法在數位信號處理的領域中非常重要因為它的應用相當廣泛。
在這篇論文中,介紹了三種影像內插演算法。第一種是利用快速傅利業轉換來近似輻射基底函數的係數來內插影像,假如運用傳統方法來計算輻射基底函數的係數且輸入資料的數量為 ,會花費 計算時間,但利用快速傅利業轉換的方法來近似係數只需花費 。
第二種介紹的內插演算法是一種混合的邊緣方向的內插法。這個方法是依據低解析度影像及對應的高解析度影像的變異數之間有幾何的對偶性關係。為了節省時間花費及使得內插影像的邊緣清晰,這個演算法合併了以變異數為基礎的內插演算法以及雙線性內插演算法。
抵抗錯誤銳利邊緣模型是一種變形的雙線性內插法,這種方法依據經典的內插錯誤理論來解決鋸齒及棋盤效應。
zh_TW
dc.description.abstractImage interpolation concerns image resolution conversion that generates a high-resolution image from its given low-resolution image and has been an important issue in the digital of digital signal processing, since its applications are widespread.
In this thesis, three interpolation algorithms are introduced. The algorithm interpolates images with the coefficients of the radial basis function (RBF) network and on the other hand, the fast computation of the RBF coefficients by using fast Fourier transform (FFT) is proposed. Computing coefficients of RBF network with this algorithm only cost computation time when the number of data is .
The second interpolation algorithm is a hybrid edge-directed image interpolation algorithm. This algorithm is based on the geometric duality between the covariance of given low-resolution image and the covariance of the high-resolution result image. For computation complexity and the clarity of the edge regions, this algorithm combines bilinear interpolation and covariance-based interpolation.
The error-amended sharp edge (EASE) scheme is an adapted bilinear method. EASE scheme solve the jagging and checkerboard effect according to the interpolation error theorem and the Sobel derivatives are utilized in the adapted bilinear interpolation model.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:20:07Z (GMT). No. of bitstreams: 1
ntu-97-R95942035-1.pdf: 1727287 bytes, checksum: 84f6838359a6dcb70abcb747ec3c0825 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書
誌謝 ii
中文摘要 iv
ABSTRACT vi
Chapter 1 Introduction 2
Chapter 2 Fast Computing of Radial Basis Function Coefficients by using FFT 6
2.1 Introduction 6
2.2 Radial Basis Function Network 8
2.3 Direct Computation of RBF Coefficients 10
2.4 Fast Computation of RBF Coefficients by using FFT 11
2.4.1 Definition of the Periodic RBF Network 11
2.4.2 Transformation of Periodic RBF Coefficient to Conventional RBF Coefficient 13
2.5 Frequency Analysis of Periodic RBF network 17
2.6 Interpolating one-dimensional data by Fast Computation of Radial Basis Function coefficients by Using FFT 19
2.6.1 Error Analysis of approximation to one-dimensional data by Fast Computation of Radial Basis Function Coefficients 22
2.7 Interpolating Two-dimensional Data by Fast Computation of Radial Basis Function coefficients by Using FFT 27
2.7.1 Experiment of two-dimension signal 27
2.7.2 Error Analysis of approximation to two-dimensional data by the Fast Computation of Radial Basis Function Coefficients 33
2.8 Conclusion 35
Chapter 3 Edge-adaptive Interpolation Algorithm 38
3.1 Introduction 38
3.2 Non – adaptive Interpolation Algorithms 39
3.2.1 Nearest Neighbor Interpolation 39
3.2.2 Bilinear Interpolation and Bicubic Interpolation 40
3.3 Edge-directed Interpolation 43
3.3.1 Introduction of Edge-directed Interpolation 43
3.3.2 Edge-directed Interpolation Model 44
3.3.3 Simulations of Edge-directed Interpolation 47
3.4 Error-amended Sharp Edge (EASE) Scheme for Image Zooming 50
3.4.1 Interpolation Error Theorem 50
3.4.2 EASE Model for One-Dimensional Signal 52
3.4.3 EASE Model for Two-Dimensional Images 55
3.4.4 Simulations of EASE model Interpolation 58
3.5 Conclusion 62
Chapter 4 Summary, Conclusion and Future Work 64
4.1 Summary and Conclusion 64
4.2 Future Work 68
Appendix A Derivation of sufficient condition (2.34)………………………...……...70
Appendix B. Derivation of sufficient condition (2.45)…………………………..….….72
REFERENCE 74
dc.language.isoen
dc.title數位影像內插放大:運用輻射基底函數及邊緣適應性演算法zh_TW
dc.titleDigital Image Interpolation: Applying Radial Basis Function and Edge-Adaptive Algorithmen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee杭學鳴,黃文良,郭景明
dc.subject.keyword影像內插,輻射基底函數,邊緣適應性演算法,zh_TW
dc.subject.keywordImage interpolation,Radial basis function,Edge-Adaptive Algorithm,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2008-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved