Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41148Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王惠鈞(Andrew H.-J. Wang) | |
| dc.contributor.author | Yu-Wei Chang | en |
| dc.contributor.author | 張育瑋 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:20:03Z | - |
| dc.date.available | 2010-07-27 | |
| dc.date.copyright | 2008-07-27 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | 1. Kowalczykowski, S. C. and Eggleston, A. K. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63, 991–1043 (1994).
2. Paques, F. and Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999). 3. Neale, M. J. and Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006). 4. Lusetti, S. L. and Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002). 5. Michel, B., Grompone, G., Flores, M. J. and Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl Acad. Sci. USA 101, 12783–12788 (2004). 6. McEachern, M. J. and Haber, J. E. Break-induced replication and recombinational telomere elongationin yeast. Annu. Rev. Biochem. 75, 111–135 (2006). 7. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003). 8. Meetei, A. R., Sechi, S., Wallisch, M., Yang, D., Young, M. K., Joenje, H., Hoatlin, M. E., and Wang, W. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003). 9. Surrallés, J., Jackson, S. P., Jasin, M., Kastan, M. B., West, S. C. and Joenje, H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev. 18, 1359–1370 (2004). 10. Kennedy, R. D. and D’Andrea, A. D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005). 11. Sung, P. and Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739-50 (2006). 12. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003). 13. Bell, C. E. Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366 (2005). 14. Bianco, P. R., Tracy, R. B. and Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998). 15. Cox, M. M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57, 551–577 (2003). 16. Story, R. M. and Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 374–376 (1992). 17. Shin, D. S., Pellegrini, L., Daniels, D. S., Yelent, B., Craig, L., Bates, D., Yu, D. S., Shivji, M. K., Hitomi, C., Arvai, A. S., Volkmann, N., Tsuruta, H., Blundell, T. L., Venkitaraman, A. R. and Tainer J. A. Full-length archaeal Rad51 structure and mutants: mechanisms for Rad51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003). 18. Pellegrini, L., Yu, D. S., Lo, T., Anand, S., Lee, M., Blundell, T. L. and Venkitaraman, A. R. Insights into DNA recombination from the structure of a Rad51–BRCA2 complex. Nature 420, 287–293 (2002). 19. Abrahams, J. P., Leslie, A. G., Lutter, R. and Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994). 20. Seitz, E. M., Brockman, J. P., Sandler, S. J., Clark, A. J. and Kowalczykowski, S. C. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12, 1248–1253 (1998). 21. White, M. F. Archaeal DNA repair: paradigms and puzzles. Biochem. Soc. Trans. 31, 690–693 (2003). 22. Aihara, H., Ito, Y., Kurumizaka, H., Yokoyama, S. and Shibata, T. The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J. Mol. Biol. 290, 495–504 (1999). 23. Kinebuchi, T., Kagawa, W., Kurumizaka, H. and Yokoyama, S. Role of the N-terminal domain of the human DMC1 protein in octamer formation and DNA binding. J. Biol. Chem. 280, 28382–28387 (2005). 24. Wu, Y., He, Y., Moya, I. A., Qian, X. and Luo, Y. (2004) Crystal structure of archaeal recombinase RadA: a snapshot of its extended conformation. Mol. Cell 15, 423–435. 25. Ariza, A., Richard, D. J., White, M. F. and Bond ,C. S. Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. Nucleic Acids Res. 33, 1465–1473 (2005). 26. Chen, L. T., Ko, T. P., Chang, Y. C., Lin, K. A., Chang, C. S., Wang, A. H. and Wang, T.F. Crystal structure of the left-handed archaeal RadA helical filament: identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins. Nucleic Acids Res. 35, 1787-1801 (2007). 27. Chen, L. T., Ko, T. P., Chang, Y. W., Lin, K. A., Wang, A. H. and Wang TF. Structural and functional analyses of five conserved positively charged residues in the L1 and N-terminal DNA binding motifs of archaeal RADA protein. PLoS ONE 2, e858 (2007). 28. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. and Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. USA 98, 8419–8424 (2001). 29. Conway, A. B., Lynch, T. W., Zhang, Y., Fortin, G. S., Fung, C. W., Symington, L. S. and Rice, P. A. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791–796 (2004). 30. Kinebuchi, T., Kagawa, W., Enomoto, R., Tanaka, K., Miyagawa, K., Shibata, T., Kurumizaka, H. and Yokoyama, S. Structural basis for octameric ring formationand DNA interaction of the human homologous pairing protein Dmc1. Mol. Cell 14, 363–374 (2004). 31. Sehorn, M. G., Sigurdsson, S., Bussen, W., Unger, V. M. and Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004). 32. Lee, M. H., Leng, C. H., Chang, Y. C., Chou, C. C., Chen, Y. K., Hsu, F. F., Chang, C. S., Wang, A. H. and Wang, T. F. Self-polymerization of archaeal RadA protein into long and fine helical filaments. Biochem. Biophys. Res. Commun. 323, 845–851 (2004). 33. Lauder, S. D. and Kowalczykowski, S. C. Asymmetry in the recA protein-DNA filament. J. Biol. Chem. 266, 5450–5458 (1991). 34. Forget, A. L., Kudron, M. M., McGrew, D. A., Calmann, M. A., Schiffer, C. A. and Knight, K. L. RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 45, 13537-13542 (2006). 35. Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. Pt A 276, 307–326 (1997). 36. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G. L. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998). 37. Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Pt 2 47, 110–119 (1991). 38. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994). 39. Wang, T. F., Kleckner, N. and Hunter, N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc. Natl. Acad. Sci. USA 96, 13941–13919 (1999). 40. Kolodner, R. Genetic recombination of bacterial plasmid DNA: electron microscopic analysis of in vitro intramolecular recombination. Proc. Natl. Acad. Sci. USA 77, 4847–4851 (1980). 41. Chen, Y. K., Leng, C. H., Olivares, H., Lee, M. H., Chang, Y. C., Kung, W. M., Ti, S. C., Lo, Y. H., Wang, A. H., Chang, C. S., Bishop, D. K., Hsueh, Y. P. and Wang, T. F. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl. Acad. Sci. USA. 101, 10572–10577 (2004). 42. Leng, C. H., Brodsky, J. L. and Wang, C. Isolation and characterization of a DnaJ-like protein in rats: the C-terminal 10-kDa domain of hsc70 is not essential for stimulating the ATP-hydrolytic activity of hsc70 by a DnaJ-like protein. Protein Sci. 7, 1186–1194 (1998). 43. Yu, X. and Egelman, E. H. Image-analysis reveals that Escherichia-coli RecA protein consists of 2 domains. Biophys. J. 57, 555–566 (1990). 44. Shi, W. X. and Larson, R. G. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles. Nano Lett. 5, 2476–2481 (2005). 45. Wang, T. F, Chen, L. T. and Wang, A. H. Right or left turn? RecA family protein filaments promote homologous recombination through clockwise axial rotation. Bioessays. 30, 48-56 (2008). 46. Patel, S. S. and Picha, K. M. Structure and function of hexameric helicases. Annu Rev Biochem. 69, 651-97 (2000). 47. Singleton, M.R., Sawaya, M.R., Ellenberger, T. and Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589−600 (2000). 48. Chen, Z., Yang, H. and Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-494 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41148 | - |
| dc.description.abstract | Homologous recombination is a universal mechanism for repairing DNA double strand breaks (DSBs) and injured DNA replication forks. RecA family proteins play a central role in homologous recombination by forming nucleoprotein filaments. These proteins include the prokaryotic RecA, archaeal RadA, and eukaryotic Rad51 and Dmc1. Here we report three crystal structures of the Sulfolobus solfataricus RadA. All of these structures are packed in the orthorhombic lattice and form the left-handed helical filaments with different helical pitches. The results strongly suggest the universal existence of left-handed helical filaments of the RecA family proteins. The structural variations of alternate protein-protein interfaces not only exhibit the extreme flexibility of filaments but also demonstrate the asymmetry within the filaments, implying the sequential binding of DNA and hydrolysis of ATP by RecA family proteins. Further structural analyses and subsequent mutagenesis studies, coupled with biochemical assays, offer a novel insight into the mechanism controlling the SsoRadA quaternary structures and filament assemblies during the catalysis of strand exchange, which involves Asp 70 and Arg 72 in the N-terminus of the NTD-CTD hinge. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:20:03Z (GMT). No. of bitstreams: 1 ntu-97-R95b46010-1.pdf: 8383486 bytes, checksum: 4fb8ce1f16d3e8b721a43dc8967ba509 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii INTRODUCTION 1 MATERIALS AND METHODS .............................................................. 6 Expression and Purification of SsoRadA 6 Crystallization, Data Collection and Structure Determination of SsoRadA 7 DNA Substrates 8 DNA Binding Assay 9 ssDNA-stimulated ATPase Activity Assays 9 Strand Assimilation Assays 10 RESULTS 11 Overall Structures of SsoRadA 0522, 0719, and 1007 11 The Asymmetry of SsoRadA Protein Filaments 12 The N-terminus of the NTD-CTD Hinge Accounts for Different Orientation of NTDs 14 Analyses of Point Mutations Indicate that SsoRadA Asp70 and Arg72 Play Crucial Roles in Strand Paring Reaction 16 DISCUSSION 20 The Orthorhombic Crystals of Left-handed RecA Family Protein Filaments 20 Implication by the Asymmetry in the Filaments 21 The Effects of DNA on SsoRadA 22 Structural Analysis Combining Biochemical Assays Indicates that D70 and R72 are Involved in Controlling the Quaternary Structures of SsoRadA Filaments 24 The Limitation of the Resolution of RadA/Rad51 Crystal Structures 27 CONCLUSION 28 FIGURES 30 TABLES 48 REFERENCES 52 POSTER 60 APPENDIX 62 | |
| dc.language.iso | en | |
| dc.subject | RADA | zh_TW |
| dc.subject | 斜方晶系晶體結構 | zh_TW |
| dc.subject | RECA | zh_TW |
| dc.subject | 同源重組 | zh_TW |
| dc.subject | 左手旋蛋白質絲狀聚合體 | zh_TW |
| dc.subject | 蛋白質絲狀聚合體的組合 | zh_TW |
| dc.subject | filament assembly | en |
| dc.subject | Homologous recombination | en |
| dc.subject | RadA | en |
| dc.subject | orthorhombic crystal structures | en |
| dc.subject | left-handed protein filaments | en |
| dc.subject | RecA family proteins | en |
| dc.title | Sulfolobus solfataricus RadA 的晶體結構:
三種新構型及其對同源重組的啟發 | zh_TW |
| dc.title | Crystal Structure of Sulfolobus solfataricus RadA:
Three New Conformations and their Implications in Homologous Recombination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王廷方(Ting-Fang Wang),史有伶(Yu-Ling Shih) | |
| dc.subject.keyword | 同源重組,RECA,RADA,斜方晶系晶體結構,左手旋蛋白質絲狀聚合體,蛋白質絲狀聚合體的組合, | zh_TW |
| dc.subject.keyword | Homologous recombination,RecA family proteins,RadA,orthorhombic crystal structures,left-handed protein filaments,filament assembly, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| Appears in Collections: | 生化科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 8.19 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
