Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41148
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王惠鈞(Andrew H.-J. Wang)
dc.contributor.authorYu-Wei Changen
dc.contributor.author張育瑋zh_TW
dc.date.accessioned2021-06-14T17:20:03Z-
dc.date.available2010-07-27
dc.date.copyright2008-07-27
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation1. Kowalczykowski, S. C. and Eggleston, A. K. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63, 991–1043 (1994).
2. Paques, F. and Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).
3. Neale, M. J. and Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006).
4. Lusetti, S. L. and Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002).
5. Michel, B., Grompone, G., Flores, M. J. and Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl Acad. Sci. USA 101, 12783–12788 (2004).
6. McEachern, M. J. and Haber, J. E. Break-induced replication and recombinational telomere elongationin yeast. Annu. Rev. Biochem. 75, 111–135 (2006).
7. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003).
8. Meetei, A. R., Sechi, S., Wallisch, M., Yang, D., Young, M. K., Joenje, H., Hoatlin, M. E., and Wang, W. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003).
9. Surrallés, J., Jackson, S. P., Jasin, M., Kastan, M. B., West, S. C. and Joenje, H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev. 18, 1359–1370 (2004).
10. Kennedy, R. D. and D’Andrea, A. D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).
11. Sung, P. and Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739-50 (2006).
12. West, S. C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).
13. Bell, C. E. Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366 (2005).
14. Bianco, P. R., Tracy, R. B. and Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998).
15. Cox, M. M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57, 551–577 (2003).
16. Story, R. M. and Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 374–376 (1992).
17. Shin, D. S., Pellegrini, L., Daniels, D. S., Yelent, B., Craig, L., Bates, D., Yu, D. S., Shivji, M. K., Hitomi, C., Arvai, A. S., Volkmann, N., Tsuruta, H., Blundell, T. L., Venkitaraman, A. R. and Tainer J. A. Full-length archaeal Rad51 structure and mutants: mechanisms for Rad51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003).
18. Pellegrini, L., Yu, D. S., Lo, T., Anand, S., Lee, M., Blundell, T. L. and Venkitaraman, A. R. Insights into DNA recombination from the structure of a Rad51–BRCA2 complex. Nature 420, 287–293 (2002).
19. Abrahams, J. P., Leslie, A. G., Lutter, R. and Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).
20. Seitz, E. M., Brockman, J. P., Sandler, S. J., Clark, A. J. and Kowalczykowski, S. C. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12, 1248–1253 (1998).
21. White, M. F. Archaeal DNA repair: paradigms and puzzles. Biochem. Soc. Trans. 31, 690–693 (2003).
22. Aihara, H., Ito, Y., Kurumizaka, H., Yokoyama, S. and Shibata, T. The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J. Mol. Biol. 290, 495–504 (1999).
23. Kinebuchi, T., Kagawa, W., Kurumizaka, H. and Yokoyama, S. Role of the N-terminal domain of the human DMC1 protein in octamer formation and DNA binding. J. Biol. Chem. 280, 28382–28387 (2005).
24. Wu, Y., He, Y., Moya, I. A., Qian, X. and Luo, Y. (2004) Crystal structure of archaeal recombinase RadA: a snapshot of its extended conformation. Mol. Cell 15, 423–435.
25. Ariza, A., Richard, D. J., White, M. F. and Bond ,C. S. Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. Nucleic Acids Res. 33, 1465–1473 (2005).
26. Chen, L. T., Ko, T. P., Chang, Y. C., Lin, K. A., Chang, C. S., Wang, A. H. and Wang, T.F. Crystal structure of the left-handed archaeal RadA helical filament: identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins. Nucleic Acids Res. 35, 1787-1801 (2007).
27. Chen, L. T., Ko, T. P., Chang, Y. W., Lin, K. A., Wang, A. H. and Wang TF. Structural and functional analyses of five conserved positively charged residues in the L1 and N-terminal DNA binding motifs of archaeal RADA protein. PLoS ONE 2, e858 (2007).
28. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. and Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. USA 98, 8419–8424 (2001).
29. Conway, A. B., Lynch, T. W., Zhang, Y., Fortin, G. S., Fung, C. W., Symington, L. S. and Rice, P. A. Crystal structure of a Rad51 filament. Nature Struct. Mol. Biol. 11, 791–796 (2004).
30. Kinebuchi, T., Kagawa, W., Enomoto, R., Tanaka, K., Miyagawa, K., Shibata, T., Kurumizaka, H. and Yokoyama, S. Structural basis for octameric ring formationand DNA interaction of the human homologous pairing protein Dmc1. Mol. Cell 14, 363–374 (2004).
31. Sehorn, M. G., Sigurdsson, S., Bussen, W., Unger, V. M. and Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004).
32. Lee, M. H., Leng, C. H., Chang, Y. C., Chou, C. C., Chen, Y. K., Hsu, F. F., Chang, C. S., Wang, A. H. and Wang, T. F. Self-polymerization of archaeal RadA protein into long and fine helical filaments. Biochem. Biophys. Res. Commun. 323, 845–851 (2004).
33. Lauder, S. D. and Kowalczykowski, S. C. Asymmetry in the recA protein-DNA filament. J. Biol. Chem. 266, 5450–5458 (1991).
34. Forget, A. L., Kudron, M. M., McGrew, D. A., Calmann, M. A., Schiffer, C. A. and Knight, K. L. RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 45, 13537-13542 (2006).
35. Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. Pt A 276, 307–326 (1997).
36. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G. L. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
37. Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. Pt 2 47, 110–119 (1991).
38. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
39. Wang, T. F., Kleckner, N. and Hunter, N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc. Natl. Acad. Sci. USA 96, 13941–13919 (1999).
40. Kolodner, R. Genetic recombination of bacterial plasmid DNA: electron microscopic analysis of in vitro intramolecular recombination. Proc. Natl. Acad. Sci. USA 77, 4847–4851 (1980).
41. Chen, Y. K., Leng, C. H., Olivares, H., Lee, M. H., Chang, Y. C., Kung, W. M., Ti, S. C., Lo, Y. H., Wang, A. H., Chang, C. S., Bishop, D. K., Hsueh, Y. P. and Wang, T. F. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl. Acad. Sci. USA. 101, 10572–10577 (2004).
42. Leng, C. H., Brodsky, J. L. and Wang, C. Isolation and characterization of a DnaJ-like protein in rats: the C-terminal 10-kDa domain of hsc70 is not essential for stimulating the ATP-hydrolytic activity of hsc70 by a DnaJ-like protein. Protein Sci. 7, 1186–1194 (1998).
43. Yu, X. and Egelman, E. H. Image-analysis reveals that Escherichia-coli RecA protein consists of 2 domains. Biophys. J. 57, 555–566 (1990).
44. Shi, W. X. and Larson, R. G. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles. Nano Lett. 5, 2476–2481 (2005).
45. Wang, T. F, Chen, L. T. and Wang, A. H. Right or left turn? RecA family protein filaments promote homologous recombination through clockwise axial rotation. Bioessays. 30, 48-56 (2008).
46. Patel, S. S. and Picha, K. M. Structure and function of hexameric helicases. Annu Rev Biochem. 69, 651-97 (2000).
47. Singleton, M.R., Sawaya, M.R., Ellenberger, T. and Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589−600 (2000).
48. Chen, Z., Yang, H. and Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-494 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41148-
dc.description.abstractHomologous recombination is a universal mechanism for repairing DNA double strand breaks (DSBs) and injured DNA replication forks. RecA family proteins play a central role in homologous recombination by forming nucleoprotein filaments. These proteins include the prokaryotic RecA, archaeal RadA, and eukaryotic Rad51 and Dmc1. Here we report three crystal structures of the Sulfolobus solfataricus RadA. All of these structures are packed in the orthorhombic lattice and form the left-handed helical filaments with different helical pitches. The results strongly suggest the universal existence of left-handed helical filaments of the RecA family proteins. The structural variations of alternate protein-protein interfaces not only exhibit the extreme flexibility of filaments but also demonstrate the asymmetry within the filaments, implying the sequential binding of DNA and hydrolysis of ATP by RecA family proteins. Further structural analyses and subsequent mutagenesis studies, coupled with biochemical assays, offer a novel insight into the mechanism controlling the SsoRadA quaternary structures and filament assemblies during the catalysis of strand exchange, which involves Asp 70 and Arg 72 in the N-terminus of the NTD-CTD hinge.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:20:03Z (GMT). No. of bitstreams: 1
ntu-97-R95b46010-1.pdf: 8383486 bytes, checksum: 4fb8ce1f16d3e8b721a43dc8967ba509 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
INTRODUCTION 1
MATERIALS AND METHODS .............................................................. 6
Expression and Purification of SsoRadA 6
Crystallization, Data Collection and Structure Determination of SsoRadA 7
DNA Substrates 8
DNA Binding Assay 9
ssDNA-stimulated ATPase Activity Assays 9
Strand Assimilation Assays 10
RESULTS 11
Overall Structures of SsoRadA 0522, 0719, and 1007 11
The Asymmetry of SsoRadA Protein Filaments 12
The N-terminus of the NTD-CTD Hinge Accounts for Different Orientation of NTDs 14
Analyses of Point Mutations Indicate that SsoRadA Asp70 and Arg72 Play Crucial Roles in Strand Paring Reaction 16
DISCUSSION 20
The Orthorhombic Crystals of Left-handed RecA Family Protein Filaments 20
Implication by the Asymmetry in the Filaments 21
The Effects of DNA on SsoRadA 22
Structural Analysis Combining Biochemical Assays Indicates that D70 and R72 are Involved in Controlling the Quaternary Structures of SsoRadA Filaments 24
The Limitation of the Resolution of RadA/Rad51 Crystal Structures 27
CONCLUSION 28
FIGURES 30
TABLES 48
REFERENCES 52
POSTER 60
APPENDIX 62
dc.language.isoen
dc.subjectRADAzh_TW
dc.subject斜方晶系晶體結構zh_TW
dc.subjectRECAzh_TW
dc.subject同源重組zh_TW
dc.subject左手旋蛋白質絲狀聚合體zh_TW
dc.subject蛋白質絲狀聚合體的組合zh_TW
dc.subjectfilament assemblyen
dc.subjectHomologous recombinationen
dc.subjectRadAen
dc.subjectorthorhombic crystal structuresen
dc.subjectleft-handed protein filamentsen
dc.subjectRecA family proteinsen
dc.titleSulfolobus solfataricus RadA 的晶體結構:
三種新構型及其對同源重組的啟發
zh_TW
dc.titleCrystal Structure of Sulfolobus solfataricus RadA:
Three New Conformations and their Implications in Homologous Recombination
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王廷方(Ting-Fang Wang),史有伶(Yu-Ling Shih)
dc.subject.keyword同源重組,RECA,RADA,斜方晶系晶體結構,左手旋蛋白質絲狀聚合體,蛋白質絲狀聚合體的組合,zh_TW
dc.subject.keywordHomologous recombination,RecA family proteins,RadA,orthorhombic crystal structures,left-handed protein filaments,filament assembly,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2008-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
8.19 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved