請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41135
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳尊賢(Zueng-Sang Chen) | |
dc.contributor.author | Jhen-Lian Wei | en |
dc.contributor.author | 魏甄蓮 | zh_TW |
dc.date.accessioned | 2021-06-14T17:19:16Z | - |
dc.date.available | 2008-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-24 | |
dc.identifier.citation | 第六章、參考文獻
王一雄,陳尊賢,李達源。1993。土壤污染學。國立空中大學。臺灣。台北市。 行政院環保署。2002a。土壤中重金屬檢測方法—王水消化法。NIEA S321.62C。中華民國九十二年七月一日環署檢字第0920047102號公告。 行政院環保署。2002b。土壤及地下水污染整治法。行政院環境保護署土污基管會網站http://ww2.epa.gov.tw/SoilGW/index.asp 林淳純。2007。孔雀草與非洲鳳仙對污染土壤鎘及美女櫻對污染土壤鉛累積吸收之研究。國立台灣大學農業化學研究所碩士論文。 盛澄淵。1970。土壤與肥料三要素。p.20-39。肥料學。正中書局。 陳尊賢,李達源、黃丁娜、王銀波。1992。各種處理方法對蔬菜自污染土壤吸收鎘之影響。p.277-292。第三屆土壤污染防治研討會論文集。台中。 陳尊賢,駱尚廉,吳先琪。1994。桃園鎘污染農業土壤之綜合性再分析與評估。行政院科技顧問組委託計畫期末報告。60頁。 陳尊賢、李毓琪、蔡呈奇。1998。台灣地區土壤環境重金屬含量調查與分析。行政院環境保護署報告 (EPA-87-H104-03-03)。 張尊國,徐貴新。1997。土壤重金屬污染之評價及因子分析。p.457-475。第五屆土壤污染防治研討會:污染土壤之整治復育技術論文集。國立臺灣師範大學教育學院大廳演講廳。台北市。1997年6月18日。 賴鴻裕。2004。EDTA對促進受重金屬鎘鋅及鉛污染土壤植生復育之研究。國立臺灣大學農業化學研究所博士論文。 Adriano, D.C. 2001. Lead. p.349-410. In Adriano, D.C. (ed.) Trace elements in the terrestrial environments. Springer, New York, Berlin, Heidelberg, Tokyo. Alkorta, I., J. Hernández, J.M. Becerril, I. Amezaga, I. Albizu, and C. Garbisu. 2004. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 3:71–90. Alloway, B.J. 1995. Introduction. p.1-10. In B.J. Alloway (ed.) Heavy metals in soils. Blacie Academic & Professionalm Glasgow, UK. Baker, A.J.M. 1981. Accumulators and excluders: strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643-654. Baker, A.J.M., and R.R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81-126. Baker, A.J.M., R.D. Reeves, and A.S.M. Hajar. 1994. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caereulescens J&C Presl (Brassicaceae). New Phytol. 127:61-68. Baker, A.J.M., S.P. McGrath, R.D. Reeves, and J.A.C. Smith. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of polluted soils. p.85-107. In N. Terry and G. Bañuelos (ed.) Phytoremediation of contaminated soil and water. CRC Press, LLC, FL, USA. Barceló, J., and Ch. Poschenriede. 2003. Phytoremediation: principles and perspectives. Contribut. Sci. 2:333–344. Blaylock, M. J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860-865. Blaylock, M. J., and J. W. Huang. 2000. Phytoextraction of metals. p.53-70. In Raskin, I., and B. D. Ensley. (ed.) Phytoremediation of toxic metals. John Wiley & Sons Inc., NY, USA. Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39-45. Brooks, R.R., J. Lee, R.D. Reeves, and T. Jaffré. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7:49-77. Brown, S.L., R.L. Chaney, J.S. Angel, and A.J.M. Baker. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59:125-133. Chen, Z.S., and D.Y. Lee. 1997. Evaluation of remediation techniques on two cadmium-polluted soils in Taiwan. p.209-223. In I. K. Iskandar and D. C. Adriano (ed.) Remediaiton of soils contaminated with metals. Science Reviews, Northwood, UK. Chen, H., and T. Cutright. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21-28. Clemens, S., M.G. Palmgren, and U. Krämer. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7:309-315. Diaz, R. M. and M. B. Kirkham. 2007. Testing the manipulation of soil availability of metals. p.121-129. In Willey, N. (ed.) Phytoremediaiton: Methods and Reviews. Humana Press Inc., Totowa, N.J. Ebbs, S.D., M.M. Lasat, D.J. Brady, J. Cornish, R. Gordon, and L.V. Kochian. 1997 Phytoextraction of cadmium and zinc from a contaminated site. J. Environ. Qual. 26:1424–1430. Ensley, B. D. 2000. Rationale for use of phytoremediation. p.3-11. In Raskin, I., and B. D. Ensley. (ed.) Phytoremediation of toxic metals. John Wiley & Sons Inc., NY, USA. Ernst, W. H.O., 1996. Bioavailability of heavy metals and decontamination of soil by plants. Appl. Geochem. 11:163–167. Ernst, W. H.O. 2000. Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol. 146:357-358. Ernst, W. H.O., 2005. Phytoextraction of mine wastes – Options and impossibilities. Chemie Der Erde-Geochemistry 65:29-42. Fischerová, Z., P. Tlustoš, J. Száková, and K. Šichorová. 2006. A comparison of phytoremediation capability of selected plant species for given trace elements. Enviromental Pollution 144:93-100. Garbisu, C., and I. Alkora. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores. Technol. 77:229-236. Gardner, W.H. 1986. Water content. p.493-544. In A. Klute et al. (ed.) Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Gee, G.W., and J.W. Bauder. 1986. Partical-size analysis. p.383-412. In A. Klute et al.(ed.) Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Glass, D. J. 2000. Economic potential of phytoremediation. p.15-31. In Raskin, I., and B. D. Ensley. (ed.) Phytoremediation of toxic metals. John Wiley & Sons Inc., NY, USA. Huang, J.W.W., J. Wang, W.R. Berti, and S.D. Cunningham. 1997. Phytoremediaiton of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 3:800-805. Jaffré, T., R.R. Broos, J. Lee, and R.D. Reeves. 1976. Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science. 193:579-580. Jiang, X.J., Y.M. Lou, Q.G. Zhao, A.J.M. Baker, P. Christie, and M.H. Wong. 2003. Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soils. Chemosphere 50:813-818. Jones, J. B., Jr., and V. W. Case. Sampling, handling, and analyzing plant tissue samples. 1990. p.389-427. In R.L. Westerman (ed.). Soil Testing and Plant Analysis. 3rd edition, Soil Science Society of America, Book series No.3. Kabata-Pendias, A., and H. Pendia. 2001. Trace elements in plants. p.73-98. In A. Kabata-Pendias, A., and H. Pendia.(ed.) Trace element in soils and plants. (3rd edition). CRC Press, Boca Raton, FL, USA. Komárek, M., P. Tlustoš, J. Száková, V. Chrastný, and V. Ettler. 2007. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67:640-651. Lai, H. Y., and Z.S. Chen. 2004. Effects of EDTA on cadmium, zinc and lead in soil solution and the uptake of these metals by rainbow pink and vetiver grass. Chemosphere 55 (3): 421-430. Lai, H. Y., and Z.S. Chen. 2005. The effect of EDTA on phytoextraction of single and combined metals-contaminated soils by rainbow pink. Chemosphere 60: 1062-1071. Lasat, M. M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 31:109–120. Lindsay, W.L., and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428. Lombi, E., F.J. Zhao, S.J. Dunham, and S.P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30:1919-1926. Luo, C., Z. Shen, and X. Li. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1-11. Luo, C., Z. Shen, X. Li, and A. J.M. Baker. 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soil through the combined application of EDTA and EDDS. Chemosphere 63:1773-1784. McLean, E.O. 1982. Soil pHand lime requirement. p.199-224. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. McGrath, S.P. 1998. Phytoextraction for soil remediation. p.261-287. In R. R. Brooks (ed.) Plants that hyperaccumulate heavy metals. CAB Int., Willingford, UK. Meers, E., A. Ruttens, M.J. Hopgood, D. Samson, and F.M.G. Tack. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011-1022. Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. Mimeo 1953. North Carolina Soil Test Div., Raleigh, NC, USA. Mench, M.J., V.L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23:58-63. Mengel, K., and A. K. Ernest. 2001. Further elements of importance. p.639-673. In Mengel, K., and A. K. Ernest. (ed.) Principles of plant nutrition. (5th edition). Kluwer Academic Publishers, Boston, London, UK. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part3. ASA and SSSA, Madison, WI, USA. Novozamsky, I., T.M. Lexmond, and V.J.G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy-metals by plants. International J. Environ. Analy. Chem. 51:47-58. Pelettini, A., R. Pomi, and E. Rolle. 2007. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere 66:866-877. Peterson, P.J. 1971. Unusual accumulation of elements by plants and animals. Sci. Progr. Oxford 59:505-526. Reeves, R.D. 1992. Hyperaccumulation of nickel by serpentine plants. p.253-277. In A.J.M. Baker, J. Proctor, and R.D. Reeve (ed.) The vegetation of ultramafic (Serpentine) soils. Intercept Ltd., Andover, UK. Reeves, R.D. 2006. Hyperaccumulation of trace elements by plants. p.25-52. In Morel J.L., G. Echevarria, and N. Goncharova. (ed.) Phytoremediation of Metal-Contaminated Soils. Springer, Netherlands. Rhoades, J.K. 1982. Cation exchange capacity. p.149-158. In A.L. Page (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Salt, D. E., M.J. Blaylock, N.P.B. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468-474. Satarug S., J. R. Baker, S. Urbenjapol, M. Haswell-Elkins, P. E. B. Reilly, D. J. Williams, and M. R. Moore. 2003. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137:65–83. Shibata, M., T. Konno, R. Akaike, Y. Xu, R. Shen and J. F. Ma. 2007. Phytoremediation of Pb contaminated soil with polymer-coated EDTA. Plant and Soil 290: 201-208. Singh, O.V., S. Labana, G. Pandey, R. Budhiraja, and R.K. Jain. 2003. Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61:405-412. Sloan, J.J., R. H. Dowdy, M. S. Dolan, and D. R. Linden. 1997. Long-term effects of biosolids application in agricultural soils. J. Environ. Qual. 26:966-974. Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th ed. USDA Natural Resources Conservation Service, Washington, DC, USA. Tandy, S., R. Schulin, and B. Nowack. 2006a. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454-1463. Tandy, S., R. Schulin, and B. Nowack. 2006b. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ. Sci. Technol. 40:2753-2758. Ultra V. U, Jr., A. Yano, K. Iwaswki, S. Tanaka, Y. Kang, and K. Sakurai. 2005. Influence of chelating agent addition on copper distribution and microbial activity in soil and copper uptake by brown mustard (Brassica juncea). Soil Sci. Plant Nutr. 51:193-202. Vassil, A.D., Y. Kapulnik, I. Raskin, and D.E. Salt. 1998. The role of EDTA in lead transport and ccumulation by Indian mustard. Plant Physiol. 117:447-453. Walker, C. H., S. P. Hopkin, R. M. Sibly, and D. B. Peakall. 2001. Major class of pollutant. p.3-22. In Walker, C. H., S. P. Hopkin, R. M. Sibly, and D. B. Peakall. Principles of Ecotoxicology. (2nd edition). Taylor & Francis Inc., New York, USA. Waring, S.A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature (London) 2001:951-952. Wu L.H., Y.M. Luo, X.R. Xing, and P. Christie. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ. 102:307-318. Wu, L., Y. Luo, and J. Song. 2007. Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. p.291-303. In Willey, N. (ed.) Phytoremediaiton: Methods and Reviews. Humana Press Inc., Totowa, N.J. Yu, H., J. Wang, W. Fang, J. Yuan, and Z. Yang. 2006. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci. Total Environ. 370:302–309. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41135 | - |
dc.description.abstract | 植生復育 (phytoremediation) 為利用植物可收獲之部位以移除土壤中污染物的技術,可大量累積重金屬於植體的地上部,另外對於生物有效性較低的重金屬,可在土壤中施用可促進其生物有效性的螯合劑 (如強鍵結能力螯合劑EDTA) 以增加植生萃取的效果。由前人研究指出孔雀草 (French marigold, Tagetes patula)、美女櫻 (Garden verbena, Verbena bipinnatifida) 及非洲鳳仙 (Impatiens, Impatiens walleriana) 為具有累積重金屬鎘、鉛之潛力且適應台灣氣候生長之植物物種。本研究目的為選用此三種植物分別種植於人工污染鎘、鉛土壤中,測試其對鎘、鉛污染土壤之耐受程度及累積能力;及施用強鍵結能力之螯合劑EDTA以增加其植生萃取之能力。本研究在國立臺灣大學人工氣候室進行試驗,控制植物生長日/夜溫度為30℃/ 25℃。土壤重金屬處理濃度分別為對照組、鎘濃度20 mg kg-1、40 mg kg-1及80 mg kg-1,及對照組、鉛濃度1000 mg kg-1及2000 mg kg-1,四重複,種植35天後收割;並在收穫前七天添加不同濃度EDTA於鎘濃度為20 mg kg-1及鉛濃度為1000 mg kg-1。種植期間,以土壤水分採集器 (RSMS) 收集第0、7、14、21、28及35天的土壤溶液,探討土壤溶液中重金屬隨時間之變化。植體以HNO3 / HClO4法分解,樣品溶液以原子吸收光譜儀 (Hitachi 180-30型) 測定土壤溶液及植體中之鎘、鉛含量。結果顯示孔雀草可忍受程度達土壤Cd 40 mg kg-1,其植體地上部Cd濃度達366± 41 mg kg-1,但非洲鳳仙忍受程度可達土壤80 mg kg-1,其植體地上部Cd濃度高達1,230 ±101 mg kg-1,已達鎘超累積植物之標準 (100 mg kg-1) 之4-12倍。美女櫻與非洲鳳仙對土壤鉛的忍受程度為1,000 mg kg-1,其植體地上部Pb濃度分別為114 ±6 mg kg-1與131 ±28 mg kg-1,雖未達超級累積植物之濃度,但已比一般植物有特別明顯較高之鉛吸收能力。於土壤鉛濃度為1,000 mg kg-1下,施用2.5及5.0 mmol EDTA kg-1可顯著增加種植於非洲鳳仙及美女櫻的土壤溶液中鉛的濃度 (p < 0.05),也顯著增加美女櫻及非洲鳳仙之植體地上部Pb濃度2-3倍,且兩種施用EDTA的濃度皆可顯著增加美女櫻之植體地上部Pb總移除量2-3倍 (p < 0.05)。 | zh_TW |
dc.description.abstract | Phytoremediation is a technique by harvesting the plants which can remove large amounts of heavy metals from the contaminated sites. To enhance the mobility and bioavailability of the metals by applying chelating agents (e.g. EDTA) and to accelerate the effect of phytoextraction, french marigold (Tagetes patula), garden verbena (Verbena bipinnatifida) and impatiens (Impatiens walleriana) had been approved that they not only have potential removal of Cd and Pb in the site but also adapt to the climate condition of Taiwan. The objectives of this study are to understand the maximum tolerance and potential accumulation of Cd and Pb of these three plants growing in the Cd- and Pb-contaminated soils. Different EDTA concentrations are also applied to enhance the phytoextraction of Cd and Pb.
The pot experiments were conducted in the phytotron of National Taiwan University, which controlled at 30 ℃ in the day and 25 ℃ in the night, respectively. The treatments of heavy metals are control, 20, 40 and 80 mg Cd kg-1, 1000 and 2000 mg Pb kg-1. Four replicates were conducted for each treatment. All plants were harvested at 35th day after transplanting into the pots. The chelating agent, EDTA, was applied with different concentrations into 20 mg Cd kg-1 and 1000 mg Pb kg-1 at the 28th day after transplanting, which were harvested at the 7th day after applying EDTA. Soil solutions were also collected by rhizon soil moisture sampler (RSMS) at the different days to monitor the changes of metal concentrations in the soil solutions. The plant samples were digested by the HNO3/HClO4 digestion method. The concentrations of Cd and Pb in the solution samples and plants were determined by atomic absorption spectrometry (Hitachi 180-30 type). The results indicated that the potential toxic concentrations of Cd for french marigold and impatiens were 40 and 80 mg kg-1 and the maximum Cd concentrations in the shoots of two plants were 366 ±41 mg kg-1 and 1230 ±101 mg kg-1, respectively. The Cd concentrations in the shoot of these two plants have reached 4-12 folds of the threshold value, 100 mg kg-1, in hyperaccumulators of Cd. The potential toxic concentrations of Pb for garden verbena and impatiens were 1000 Pb mg kg-1 and the maximum Pb concentrations in the shoots of two plants were 114 ±6 mg kg-1 and 131 ±28 mg kg-1, respectively. Although they do not reach the threshold value, 1000 mg kg-1, of hyperaccumulators of Pb, the Pb concentrations in garden verbena and impatiens are much higher than that of other normal plants. The concentration of Pb in soil solutions of garden verbena and impatiens increased significantly after applying 2.5 and 5.0 mmol EDTA kg-1 into the soils contaminated by 1000 Pb mg kg-1 (p <0.05). In addition, applying EDTA significantly increased the Pb concentrations in the shoot of garden verbena and impatiens by 2-3 folds and the total Pb removal by garden verbenas’ shoots is 2-3 folds (p <0.05) as well. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:19:16Z (GMT). No. of bitstreams: 1 ntu-97-R95623014-1.pdf: 2029415 bytes, checksum: f0a5ec5905e77585a9a1a3e4d211f370 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
頁次 摘要……………………………………………………………........…..……..…I Abstract…………………………………………………………………...……….…III 目錄……………………………………………………………………….……….…Ⅴ 表目錄………………………………………………………………………….……Ⅶ 圖目錄…………………………………………………………………………….…Ⅷ 第一章、前言………………………………………………………….…1 第二章、前人研究 第一節、土壤中重金屬污染來源……………………………………………………3 第二節、重金屬污染土壤之復育技術………………………………………………4 一、化學處理………………………………………………………………..….5 二、工程技術………………………………………………………………...…5 三、生物處理……………………………………………………………………5 第三節、植生復育技術………………………………………………………..…...…6 一、植生復育處理機制…………………………………………………..…..…6 二、植生復育的優點及限制……………………………………………..…..…7 三、植生萃取..………………………………………………………………….8 四、植物對重金屬的反應…………………..…………………………………10 五、超級累積植物………………………………………………….…………..11 第四節、提升植生萃取效果…………………………………………………….….12 第五節、試驗植物的選用……………………………………………………………14 第三章、材料與方法 第一節、供試土壤基本性質分析……………………………………………………15 第二節、受鎘、鉛污染土壤對於試驗植物生長的影響……………………………19 一、人工配製鎘、鉛污染土壤…………………………………………………19 二、盆栽試驗…………………………………………………….…………….21 第三節、施用EDTA對於非洲鳳仙及孔雀草攝取鎘的影響…………………….…22 第四節、施用EDTA對於非洲鳳仙及美女櫻攝取鉛的影響…………………….…23 第四章、結果與討論 第一節、供試土壤的基本理化性質………………………………………………..24 第二節、人工配製鎘、鉛污染土壤對非洲鳳仙、孔雀草及美女櫻生長的影響..26 一、非洲鳳仙、孔雀草於人工配製鎘污染土壤的生長情況、累積濃度 及總移除量…………………………………………………………….26 二、 非洲鳳仙、美女櫻於人工配製鉛污染土壤的生長情況、累積濃度 及總移除量…………………………………………………………….34 三、 於鎘、鉛污染土壤中土壤溶液的重金屬濃度隨時間之變化…………...41 四、 不同土壤萃取劑與植體地上部累積重金屬濃度之關係………….……44 第三節、施用EDTA對於非洲鳳仙及孔雀草攝取鎘的影響………………………52 一、施用EDTA對非洲鳳仙及孔雀草土壤溶液鎘的影響……………………52 二、施用EDTA對於非洲鳳仙及孔雀草生長狀況、重金屬累積濃度及 總鎘移除量的影響…………………………………………………….59 第四節、施用EDTA對於非洲鳳仙及美女櫻攝取鉛的影響………………………61 一、施用EDTA對非洲鳳仙及美女櫻土壤溶液中鉛的影響……………….61 二、施用EDTA對於非洲鳳仙及美女櫻生長狀態、重金屬累積濃度及 總移除鉛量的影響…………………………………………….………68 第五章、結論……………………………………………………………71 第六章、參考文獻……………………………………….……..………72 | |
dc.language.iso | zh-TW | |
dc.title | 孔雀草非洲鳳仙與美女櫻對污染土壤鎘鉛之植生萃取研究 | zh_TW |
dc.title | The Phytoextraction of French Marigold, Immpatiens and Garden Verbena for Cadmium and Lead in Contaminated Soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王敏昭(Min-Chao Wang),鐘仁賜(Ren-Shih Chung) | |
dc.subject.keyword | 植生萃取,非洲鳳仙,孔雀草,美女櫻,鎘,鉛,EDTA, | zh_TW |
dc.subject.keyword | phytoextraction,impatiens,french marigold,garden verbena,hyperaccumulator,Cadmium,Lead,EDTA, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。