Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇秀媛(Hsiu-Yuan Su)
dc.contributor.authorChi-Chen Linen
dc.contributor.author林其臻zh_TW
dc.date.accessioned2021-06-14T17:19:10Z-
dc.date.available2008-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-24
dc.identifier.citation詹子慧(2003)作物病蟲害微生物防治之適當統計分析法。
國立台灣大學農藝所生物統計組碩士論文。
羅朝村(2002)木黴菌與植物病害防治。第八章。pp.77-88。
農業試驗所特刊第102號。
呂秀英(2003) 重複測量資料分析的統計方法。
科學農業51:174-185。

林俊義,安寶貞,張清安,羅朝村,謝廷芳(2004)作物病害之非農藥防治技術(再版)。行政院農業委員會農業試驗所。
Baker,K.F. and Cook,R.J.(1974)Biological Control of plant Pathogens.American Phytopathological Society Press.St.Paul.Minnesota.433pp.
Crainiceanu CM. and Ruppert D.(2004)Likelihood ratio tests in linear mixed models with one variance component.extit Journal of the Royal Statistical Society Series B. 66:165-185.
Everitt,B.S.(1995)The analysis of repeated Measures: a practical review with examples.The Statistician. 44:113-135.

Finney,D.J.(1990)Repeated measurements: what is measured and what repeats?Statistics in Medicine 9:639-644.

Fitzmaurice,G.M.,Laird,N.M. and Ware,J.H.(2004a)Restricted Maximum Likelihood(REML)Estimation.pp.99-102.
Applied Longitudinal Analysis,United States of America.
Fitzmaurice,G.M.,Laird,N.M. and Ware,J.H.(2004b)Marginal Models: Generalized Estimating Equations(GEE).pp.291-305.
Applied Longitudinal Analysis,United States of America.

Frison,L. and Pocock,S.J.(1992)Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design.Statistics in Medicine. 11:1685-1704.
Garrett, J.(1963)Soil Fungi and Fertility. Pergamon Press,Oxford.

Gurrin,L.C.,Scurrah,K.J. and Hazelton, M.L.(2005)Tutorial in biostatistics:
spline smoothing with linear mixed models.Statistics in medicine}. 24:3361-3381.

Henderson CR.(1975)Best linear unbiased estimation and prediction under a selection model.Biometrics}. 31:423-447.

Laird,N.M. and Ware,J.H(1982)Random effects models for longitudinal data.Biometrics. 38:963-974.

Liang,K.-Y. and Zeger,S.L.(1986)Longitudinal data analysis using generalized linear models. extit{Biometrika}. 73:13-22.
Matthews,J.N.S. et al(1990)Analysis of serial measurements in medical research.British Medical Journal. 300:230-235.

Robinson,GR.(1991)That BLUP is a good thing:the estimation of random effects.tatistical Science}.6:15-51.

Weindling R.(1934)Studies on a lethal principle effective in the parasitic action of Trichodema lignorum on
Rhizoctonia solani and other soil fungi.Phytopathology. 24:1153-1179.

Zeger,S.L. and Liang,K.-Y.(1986)Longitudinal data analysis for discrete and continuous outcomes.Biometrics. 42:121-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41133-
dc.description.abstract縱向資料(longitudinal data)為同一個體,在不同時間下,經重複觀測而得的資料。因由同一個體而來,所以其觀測值就不獨立,例如:藥物試驗時,每個病人在每個時間點觀測藥效變化,則同一個病人測的資料,有相關性存在;又如農業方面,尤其是多年生作物,測其肥料、農藥......等影響,也常用重複觀測得到資料。因為這種資料具有相關性存在,所以無法使用一般的迴歸分析或變方分析,必須使用其他一些特別模式分析,常用的方法有線性混合模式(linear mixed model)和廣義估計方程式(generalized estimating equation)來分析。
廣義估計方程式為將相關的資料以群聚(cluster)的方式組合,並且把整組資料視為彼此獨立的群聚,再以群聚為單位用一般線性迴歸分析。線性混合模式比一般線性模式使用更廣泛,此因它可以同時估計固定效應和隨機效應,使得一些有相關性的資料,變成可以分析。
本篇文章將利用一筆由國立屏東科技大學植物保護系 生物防治研究室提供,將木黴菌拮抗立枯絲核菌的功效,經過一段時間重複觀測所得的資料。詹(2003)曾用生物檢定法(biological assay)做過分析。本文我們將八種木黴菌重複測量的觀測值,視為隨機效應;木黴菌品種視為固定效應,用線性混合模式和廣義估計方程式進行分析,並比較各木黴菌品種抗立枯絲核菌的效能,再將結果和詹(2003)結果比較,判別方法的優劣。
zh_TW
dc.description.abstractLongitudinal data can be obtained by observing same object at different time. So the observations are not indepedent with each other.In drug experiment,observations on the reactions of the same patient at different time are not mutually independent. In agriculture,the effect of fertilizers or insecticides can be treated as longitudinal data too, especially for perennial crops.
Because of the existence of correlations between observations,it is not appropriate to use general regression analysis or ANOVA.Linear mixed model and generalized estimating equation are two kinds of methods often used in analyzing longitudinal data.

Generalized estimating equation divides data into different clusters by their correlations.Then it can be analyzed by general regression analysis ,assuming that the clusters are independent with one another.Linear mixed model is used more often,because the model can be used to analyze the data with fixed and random effect at the same time.
The data used in the thesis was provided by Biological Control Laboratory in Department of Plant Protection in National PingTung University of Science & Technology.The main interest is to know the effect of Trichoderma spp. on Rhizoctonia solani with repeated measure data. Chan(2003) analyzed the data by using the method of Biological assay.This thesis analyzes the same data by using linear mixed model and generalized estimating equation.The effect of seven species of Trichoderma spp. is fixed effect and the effect of observations from repeat measurement is random effect.The results are also compared with those obtained by Chan(2003).
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:19:10Z (GMT). No. of bitstreams: 1
ntu-97-R95621207-1.pdf: 1321060 bytes, checksum: 6934809febdbc2875918fc001bf20b1c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1.前言...............................1
1.1縱向資料(longitudinal data)......1
1.2生物防治.........................2
2.材料與統計方法.....................4
2.1材料.............................4
2.2線性混合模式(Linear mixed model)........4
2.2.1線性混合模式..........................4
2.2.2受制最大概度估計量(Restricted maximum likelihood estimation)................................6
2.2.3共變數結構............................7
2.3廣義估計方程式(Generalized estimating equation)....8
2.3.1邊際模型(Marginal model).......................8
2.3.2廣義估計方程式................................10
2.3.3共變數結構....................................11
2.4真菌生長抑制率....................................11
3.結果與討論................................13
3.1線性混合模式...........................13
3.1.1立枯絲核菌R1的結果.................13
3.1.2立枯絲核菌R2的結果.................16
3.1.3立枯絲核菌R3的結果.................19
3.2廣義估計方程式.........................22
3.2.1立枯絲核菌R1的結果.................22
3.2.2立枯絲核菌R2的結果.................25
3.2.3立枯絲核菌R3的結果.................28
4.結論與未來研究方向........................31
4.1結論與模式比較.........................31
4.2未來研究方向...........................33
參考文獻....................................34
附錄(SAS程式)...............................36
dc.language.isozh-TW
dc.subject真菌生長抑制率zh_TW
dc.subject縱向資料zh_TW
dc.subject線性混合模式zh_TW
dc.subject廣義估計方程式zh_TW
dc.subject生物防治zh_TW
dc.subjectlongitudinal dataen
dc.subjectbiological control dataen
dc.subjectgeneralized estimating equationen
dc.subjectlinear mixed modelen
dc.subjectgrowth inhibition ratioen
dc.title以線型混合模式與廣義估計方程式分析生物防治資料zh_TW
dc.titleApplications of linear mixed model and generalized estimating equation to biological control dataen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭雲明(Yun-Ming Pong),劉力瑜(Li-yu D. Liu)
dc.subject.keyword縱向資料,線性混合模式,廣義估計方程式,生物防治,真菌生長抑制率,zh_TW
dc.subject.keywordlongitudinal data,linear mixed model,generalized estimating equation,biological control data,growth inhibition ratio,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2008-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved