請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅(Whei-May Lee) | |
dc.contributor.author | Chien-Ping Huang | en |
dc.contributor.author | 黃建賓 | zh_TW |
dc.date.accessioned | 2021-06-14T17:16:10Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 參考文獻
1. Agranovski, V., Ristovski, Z., Blackall, P.J. & Morawsk, L. Size-selective assessment of airborne particles in swine confinement building with the UVAPS. Atmospheric Environment 38,3893–3901 (2004). 2. Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P.J. & Morawska, L. Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. Aerosol Science and Technology 34, 1711–1727 (2003). 3. Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P.J. & Morawskaa, L. Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Aerosol Science and Technology 34 , 301–317 (2003). 4. Agranovski, V. & Ristovski, Z.D. Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. Aerosol Science and Technology 36 ,665-676 (2005). 5. Bernstein, J.A. et al. The health effects of nonindustrial indoor air pollution. J ALLERGY CLIN IMMUNOL VOLUME 121, (2008). 6. Blachere, F.M. et al. Bioaerosol sampling for the detection of aerosolized influenza virus. Influenza and Other Respiratory Viruses 1(3), 113–120. (2007). 7. Burge, H.A. & Otten, J.A. “Fungi” In: Macher, J.M., H.A. Ammann, H.A. Burge and D. Milton.(eds) Bioaerosol: assessment and control. Cincinnati, ACGIH, 19.1-13 (1995). 8. Daniels, S.L. Applications of Air Ionization for Control of VOCs and PMx. 94th Annual Conference of Air&Waste Management Association Paper # 918 (2001). 9. Daniels, S.L. “On the Ionization of Air for Removal of Noxious Effluvia” (Air Ionization of Indoor Environments for Control of Volatile and Particulate Contaminants With NonthermalPlasmas Generated by Dielectric-Barrier Discharge). IEEE TRANSACTIONS ON PLASMA SCIENCE VOL. 30, NO. 4 (2002). 10. Donham, J., Haglind, P., Peterson, Y., Rylander, R. & Belin, L. Environmental and health studies of farm worers in Swedish swine confinement buildings. British J. Ind. Med. 46, 31-37 (1989). 11. DOUWES, J., THORNE, P., PEARCE, N. & HEEDERIK, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. occup. Hyg Vol. 47, No. 3, pp. 187–200 (2003). 12. Eduard, W., P. Sandven & Levy, F. Serum IgG antibodies to mold spores in two Norwegian sawmill populations: relationship to respiratory and other wor-related symptoms. Am.J. Ind 24, 207-222 (1993). 13. Fan, L., Song, J., Hildebrand, P.D. & Forney, C.F. Interaction of ozone and negative air ions to control micro-organisms. Journal of Applied Microbiology 93, 144–148 (2002). 14. Fung, F. & Hughson, W.G. Health Effects of Indoor Fungal Bioaerosol Exposure. Applied Occupational and Environmental Hygiene 18: 535–544 (2003). 15. Grabarczyk, Z. E!ectiveness of indoor air cleaning with corona ionizers. Journal of Electrostatics 51-52 ,278-283 (2001). 16. Heyder, J., Gebhart, J., Rudolf, G., Schiller, C.F. & Stahlhofen, W. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005-15 μm. Journal of Aerosol Science, Vol. 5, pp. 811-828 (1986). 17. Hinds, W.C. Aerosol Technology Properties,Behavior, and Measurement of Airborne Particles. (1999). 18. Hõrrak, U., Salm, J. & Tammet, H. Brusts of intermediate ion in atmospheric air. Geophys.Res. 103(D12),13909-13915 (1998). 19. Huang, R., Agranovski, I., Pyankov, O. & Grinshpun, S. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions. Indoor Air 18 (2) ,106–112 (2008). 20. Iijima, S. Helical microtubes of graphitic carbon. Letters to Nature vol 354,(1991). 21. Ireland, J.C., Klostermann, P., Rice, E.W. & Clark, R.M. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl. Environ. Microbial. 59,(5)pp.1668-1670 (1993). 22. Jeong, H.J., Lim, S.C., Kim, K.S. & Lee, Y.H. Edge effect on the field emission properties from vertically aligned carbon nanotube arrays. Letters to the Editor / Carbon 42, 3003–3042 (2004). 23. Jo, W.-K. & Seo, Y.-J. Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere 61,1570–1579 (2005). 24. Jovanovic, S. et al. Indoor fungi levels in homes of children with and without allergy history. Int. J. Hyg. Environ. Health 207,369-378 (2004). 25. Jr, C.J.H. et al. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology 99, 1422–1434 (2005). 26. Jung, H.Y., Jung, S.M., Kim, L. & Suh, J.S. A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission. Carbon S0008-6223(08),00139-5 (2008). 27. Kalogerakis, N. et al. Indoor air quality—bioaerosol measurements in domestic and office premises. Aerosol Science and Technology 36,751–761 (2005). 28. Kanaani, H., Hargreaves, M., Ristovski, Z. & Morawska, L. Performance assessment of UVAPS: Influence of fungal spore age and air exposure. Aerosol Science and Technology 38, 83 – 96 (2007). 29. Kellogg, E.W., Yost, M.G., Barthakur, N. & Kreuger, A.P. Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus. Nature vol.281 (1979). 30. Kongkanand, A., Domı´nguez, R.M.n. & Kamat*, P.V. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons. NANO LETTERS Vol.7, No.3 ,676-680 (2007). 31. Kowasaki, J., W., Choi, Y.T., Seo, D.J. & Park, S.B. Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus. Ozone-Sci Eng. 20, 205-221 (1998). 32. Krueger, A.P. & Reed, E.J. Biological Impact of Small Air Ions. SCIENCE VOL.193, 1209-1213 (1976). 33. Lee, B.U., Kim, S.H. & Kim, S.S. Hygroscopic growth of E. coli and B. subtilis bioaerosols. Aerosol Science and Technology 33,1721–1723 (2002). 34. Lee, B.U., Yermakov, M. & Grinshpun, S.A. Unipolar ion emission enhances respiratory protection against fine and ultrafine particles. Aerosol Science and Technology 35, 1359–1368 (2004). 35. Lee, B.U., Yermakov, M. & Grinshpun, S.A. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmospheric Environment 38, 4815–4823 (2004). 36. Lee, S., Naamura, M. & Ohgai, S. Inactivation of phase Q beta by 254 nm UV light and titanium dioxide photocatalyst. J Environ Sci Heal A 33, 1643-1655 (1998). 37. Li, C. et al. A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. Journal of Materials Chemistry 17, 2406–2411 (2007). 38. Li, C.S. & Wen, Y.M. Control effectiveness of electrostatic precipitation on airborne microorganisms. Aerosol Science and Technology 37,933–938 (2003). 39. Li, C.-S., Tseng, C.-C., Lai, H.-H. & Chang, C.-W. Ultraviolet Germicidal Irradiation and Titanium Dioxide Photocatalyst for Controlling Legionella pneumophila. Aerosol Science and Technology 37,961–966 ( 2003). 40. LI, D.-W. & YANG, C.S. Fungal Contamination as a Major Contributor to Sick Building Syndrome. ADVANCES IN APPLIED MICROBIOLOGY VOLUME 55,(2004). 41. Liao, C.M., Luo, W.C., Chen, S.C., Chen, J.W. & Liang, H.M. Temporal/seasonal variations of size-dependent airborne fungi indoor/outdoor relationships for a wind-induced naturallyventilated airspace. Atmospheric Environment 38, 4415–4419 (2004). 42. Lin, C.H. & Li, C.S. Effectiveness of titanium dioxide photocatalyst filter for controlling bioaerosol. Aerosol Sci. Technol 37, 162-170 (2003). 43. Luts, A. Evolution of negative small ions at enhanced ionization. JOURNAL OF GEOPHYSICAL RESEARCH VOL. 100, NO. D1, PAGES 1487-1496, JANUARY 20,(1995). 44. Macher, J. Bioaerosols:assessment and control.(1999). 45. Maier, R.M., Pepper, I.L. & Gerba, C.P. Environment Microbiology.(2000). 46. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N. & Komine, T. Continuous-Sterilization system that uses photosemiconductor powders. Appl. Environ. Microbial 54, pp. 1330-1333 (1988). 47. Meklin, T. et al. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment 36,6031–6039 (2002). 48. Melbosted, E. et al. Exposure to bacterial aerosol and work-related symptoms in sewage workers. Am. J. Ind. Med. 25, 59-63 (1994). 49. Mui, K.W., Wong, L.T. & Hui, P.S. Risks of unsatisfactory airborne bacteria level in air-conditioned offices of subtropical climates. Building and Environment 43 ,475–479 (2008). 50. Nagato, K., Matsui, Y., Miyata, T. & Yamauchi, T. An analysis of the evolution of negative ions produced by a corona ionizer in air. International Journal of Mass Spectrometry 248, 142–147 (2006). 51. Nakane, H., Asami, O., Yamada, Y. & Ohira, H. Effect of negative air ions on computer operation, anxiety and salivary chromogranin A-like immunoreactivity. International Journal of Psychophysiology 46, 85–89 (2002). 52. Nevalainen, A. & Seuri, M. Of microbes and men. Indoor Air 15 (Suppl 9),58–64 (2005). 53. Park, J.H., Jeon, S.Y., Alegaonkar, P.S. & Yoo, J.B. Improvement of emission reliability of carbon nanotube emitters by electrical conditioning. Thin Solid Films 516 , 3618–3621 (2008). 54. Pei-Chih, W., Huey-JenU, S. & Chia-Yin, L. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of the Total Environment 253,111-118 (2000). 55. Popov, V.N. Carbon nanotubes: properties and application. Materials Science and Engineering R 43 61–102(2004). 56. Redlich, C.A., Sparer, J. & Cullen, M.R. Sick-building syndrome. THE LANCET Vol 349,(1997). 57. Reponen, T., Hyv.arinen, A., Ruusanen, J. & Nevalainen, A. Comparison of concentration and size distributions of fungal spores in buildings with and without mould problems. Journal of aerosol science vol. 25, no 8 (18 ref.), pp. 1595-1603 (1994). 58. Richardson, G., Eick, S.A., Harwood, D.J., Rosen, K.G. & Dobbs, F. Negative air ionization and the production of hydrogen peroxide. Atmospheric Environment 37,3701-3706 (2003). 59. Ross, M.A. et al. Association of asthma symptoms and severity with indoor bioaerosols.Allergy 55,705-711 (2000). 60. RYLANDER, R. Microbial Cell Wall Agents and Sick Building Syndrome. ADVANCES IN APPLIED MICROBIOLOGY, VOLUME 55,(2004). 61. Salonen, H., Lappalainen, S., Lindroos, O., Harju, R. & Reijula, K. Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment 41,6797–6807 (2007). 62. Shi, L., Chen, B. & Wang, Y. Electret air filter used for getting rid of bacteria. (ISE6)Proceedings, 6th International Symposium on Electrets, 549-522 (1988). 63. Sigsgaard, T., Malmros, P., Nersting, L. & Peterson, C. Respiratory disorders and atopy in Danish resource recovery worers. Can. J. Microbiol 1-24 (1992). 64. Sivasubramani, S.K., Niemeier, R.T., Reponen, T. & Grinshpun, S.A. Assessment of the aerosolization potential for fungal spores in moldy homes. Indoor Air 14,405–412 (2004). 65. Skalny, J.D., Mikoviny, T., Matejcik, S. & Masonb, N.J. An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air. International Journal of Mass Spectrometry 233 ,317–324 (2004). 66. Skalny, J.D. et al. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. International Journal of Mass Spectrometry 272, 12–21 (2008). 67. Smirnov, B.M. Cluster ions and Van der Waals Molecules. Gordon and Breach,Philadelphia 18-24 (1992). 68. Sveningsson, M. et al. Highly efficient electron field emission from decorated multiwalled carbon nanotube films. APPLIED PHYSICS LETTERS VOLUME 85,(2004). 69. Tchijevsky, A.L. transaction of Central Laboratory Scientific Research on Ionification. (The Commune, Voronej) (1933). 70. Tseng, C.-C. & Li, C.-S. Ozone for Inactivation of Aerosolized Bacteriophages. Aerosol Science and Technology 40,683–689 (2006). 71. Wu, C.C. & Lee, G.W.M. Oxidation of volatile organic compounds by negative air ions Chih Cheng Wu, Grace W.M. Lee. Atmospheric Environment 38,6287–6295 (2004). 72. Wu, C.C., Lee, G.W.M., Yang, S., Yu, K.-P. & Lou, C.L. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Science of the Total Environment 370,245–253 (2006). 73. Yao, M., Mainelis, G. & An, H.R. Inactivation of Microorganisms Using Electrostatic Fields. Environ. Sci. Technol. 39,3338-3344 (2005). 74. Yu, K.-P., Lee, G.W.-M., Lin, S.-Y. & Huang, C.P. Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions. Aerosol Science and Technology 39, 377–392 (2008). 75. 吳致呈,空氣負離子控制室內空氣污染物之研究。國立台灣大學 環境工程研究所博士論文(2006) 76. 王玉純,臭氧對生物氣膠殺菌效率之評估,國立台灣大學環境衛 生研究所博士論文(2002) 77. 林家妤,以紫外線及二氧化鈦光觸媒對生物氣膠控制技術之評 估,國立台灣大學環境衛生研究所博士論文(2002) 78. 孫浩仁,室內材質表面特性對空氣負離子去除懸浮微粒效率之影 響,國立台灣大學環境工程研究所碩士論文(2006) 79. 婁嘉玲,紫外光與光觸媒濾材對生物氣膠殺菌效率之研究,國立 台灣大學環境工程研究所碩士論文(2005) 80. 曾國瑋,奈米銀濾材處理生物氣膠之研究,國立台灣大學環境工 程研究所碩士論文(2006) 81. 黃小林,莊佩君,黃宜靖,揚心豪,幾丁聚醣前處理濾材對細菌 類生物氣膠去除效能之評估, 2006年國際氣膠研討會論文集 82. 鄭博仁,空氣負離子對室內懸浮微粒去除效率之研究,國立台灣 大學環境工程研究所碩士論文(2004) 83. 劉芸汶,一般辦公大樓空氣及灰塵中活性真菌濃度與病態大樓症 候群之相關性探討,國立成功大學環境醫學研究所碩士論文 (2003) 84. 楊心豪,帶電濾材對室內懸浮微粒去除效率之研究,國立台灣大 學環境工程研究所博士論文(2005) 85. 廖弓普,奈米碳管放電產生空氣負離子為型裝置之研究,國立台 灣大學環境工程研究所碩士論文(2007) 86. 管俊亭,奈米碳管產生空氣負離子微型裝置控制懸浮微粒之研 究,國立台灣大學環境工程研究所碩士論文(2007) 87. 蔡宗岩,蘇信昌,戴念華,林諭男,以網印法製備奈米碳管場發射冷陰極之研究,真空科技,十九卷一期(2006) 88. 王誠佑,徐明昇,不同後處理對奈米碳儲氫影響之探討,化工,第53卷第3期(2006) 89. 楊素華,藍慶忠,奈米碳管場發射顯示器,科學發展,382期(2004) 90. 張益瑋,多壁奈米碳管強化環氧樹脂複合材料的機械性質,元智 大學機械工程研究所碩士論文(2005) 91. 鍾耀磊,奈米碳管吸附自來水中三鹵甲烷之研究,國立中興大學 環境工程研究所碩士論文(2003) 92. 紀妙青,李芝珊,應用培養與非培養方法分析養雞場生物氣膠特 性,2006年國際氣膠研討會論文集 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41088 | - |
dc.description.abstract | 摘要
本研究目的為評估奈米碳管空氣負離子產生裝置在連續處理的狀況下對所選用的四種生物氣膠物種:E.coli、B.subtilis、C.famata、P.citrinum之控制效率,以了解空氣負離子對不同生物氣膠物種在控制效率上的差異性,並比較以沾附奈米碳管之不鏽鋼針尖與傳統不鏽鋼針尖放電產生空氣負離子對生物氣膠的控制效率上有何異同,並於不同相對濕度的條件下進行實驗,以了解相對濕度對空氣負離子控制生物氣膠的影響。 研究結果發現,沾附奈米碳管之不鏽鋼針尖可以在較低的放電電壓下即開始產生出高於室內濃度背景值的空氣負離子,但其所產生空氣負離子之濃度隨時間是呈現出不穩定且衰減的趨勢。增加不鏽鋼針尖產生空氣負離子之放電電壓,對其控制生物氣膠之效率會有明顯的提升;增加沾附奈米碳管之不鏽鋼針尖產生空氣負離子之放電電壓,對其控制生物氣膠之效率提升性則較不顯著。以不鏽鋼針尖在放電電壓為2.8kV與沾附奈米碳管之不鏽鋼針尖在放電電壓為1.8kV之下產生空氣負離子對本研究所選定的四種生物氣膠之控制效率由大到小為ηB.Subtilis ≒ηE.Coli > ηYeast ≒ηP.Citrinum.。使用不鏽鋼針尖產生空氣負離子控制生物氣膠時,相對濕度的影響非常重要,較小顆粒生物氣膠(E.Coli及B.Subtilis)而言,都是在RH=50%時有最佳的控制效率出現,而RH=30%時的控制效率比RH=70%時的控制效率好;對於較大顆粒的生物氣膠(Yeast及P.Citrinum)而言,空氣負離子對其控制效率皆是在RH=70%時有最佳控置效率,而使用沾附奈米碳管之不鏽鋼針尖產生空氣負離子控制生物氣膠時,相對濕度的改變對其控制效率的影響不明顯。以不鏽鋼針尖放電電壓2.8kV產生空氣負離子控制生物氣膠,其控制效率隨時間的變化關係大致維持在一個穩定的狀態。以沾附奈米碳管之不鏽鋼針尖放電電壓1.8kV產生空氣負離子對生物氣膠之控制效率是隨時間而呈現出衰減的狀態。 | zh_TW |
dc.description.abstract | The purpose of this study was to evaluate control efficiency on bioaerosols, including E.coli、B.subtilis、C.famata(Yeast)、P.citrinum, by using negative air ion (NAI) which was produced on carbon nanotubes (CNTs). The effects of relative humidity were investigated in this study. Also, it compared the generation of NAI at a concentration of 7×105-1.2×106 ions cm-3 in experimental chamber (9.32×10-2 m3) by negative electric discharge with different discharge voltage on CNTs needle and conventional stainless steel needle.
The results showed that the higher concentration of NAI was produced under lower discharging voltage on CNTs needle, but unstable and the NAI concentration decreased with time compared with stainless steel needle. The control efficiency of bioaerosols increased with discharge voltage of stainless steel needle,but it is not significant on CNTs needle. In general, the order of control efficiency on bioaerosols by NAI is ηB.Subtilis ≒ ηE.Coli > ηYeast ≒ ηP.Citrinum. When NAI generated by stainless steel needle, the best control efficiency of E.coli and B.subtilis were found at RH=50%, and the control efficiency under RH=30% is better than that at RH=70%. The best control efficiency of C.famata(Yeast) and P.citrinum were obtained at RH=70%. However, when the NAI produced by carbon nanotubes needle to control bioaerosols, the effect of RH was not significant. The control efficiency of the bioaerosols on stainless steel needle was stable with time, but decreased for CNTs needle. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:16:10Z (GMT). No. of bitstreams: 1 ntu-97-R95541130-1.pdf: 2871057 bytes, checksum: 71abe1fafb26f366e563d017350e8965 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
第一章 緒論........................................................1 1-1 研究緣起......................................................1 1-2 研究目的......................................................3 1-3 研究內容與方法................................................4 1-4 研究流程......................................................5 第二章 文獻回顧....................................................6 2-1 生物氣膠.......................................................6 2-1-1 生物氣膠的基本特性.......................................6 2-1-2 生物氣膠之來源與種類.....................................8 2-1-2-1 細菌氣膠...............................................8 2-1-2-2 真菌氣膠...............................................9 2-2 室內生物氣膠濃度之影響因子....................................10 2-3 生物氣膠對人體的危害..........................................12 2-4 生物氣膠之採樣方法............................................18 2-4-1 培養法..................................................18 2-4-2 非培養法................................................19 2-5 各國室內生物性氣膠濃度規範與建議值............................21 2-6 室內生物氣膠控制技術..........................................23 2-6-1 紫外光控制技術..........................................24 2-6-2 光觸媒控制技術..........................................24 2-6-3 臭氧控制技術............................................25 2-6-4 抗菌濾材控制技術........................................26 2-6-5 靜電收集技術............................................27 2-6-6 空氣負離子控制技術......................................28 2-6-6-1 空氣負離子產生方式..............................29 2-6-6-2 空氣負離子基本特性..............................29 2-6-6-3 空氣負離子對室內懸浮微粒的控制效能..............33 2-6-6-4 空氣負離子對室內揮發性有機物質的控制效能........35 2-6-6-5 空氣負離子對室內生物氣膠的控制效能..............35 2-7 奈米碳管之相關文獻............................................38 2-7-1 奈米碳管之制備方式......................................38 2-7-2 奈米碳管之結構..........................................42 2-7-2 奈米碳管之場發射特性....................................44 2-7-3 奈米碳管之應用..........................................46 第三章 實驗原理與實驗設備.........................................48 3-1 實驗系統......................................................48 3-1-1 實驗設備................................................52 3-1-2 生物氣膠培養單元........................................55 3-1-2-1 大腸桿菌(Escherichia coli) ......................55 3-1-2-2 酵母菌(Candida famata var. flareri;Yeast) ......56 3-1-2-3 青黴菌(Penicillium citrinum )....................57 3-1-2-4 枯草桿菌(Bacillus subtilis) .....................57 3-1-3 生物氣膠產生單元........................................58 3-1-4 生物氣膠採樣單元........................................58 3-2 菌液稀釋度測試................................................60 3-3 生物氣膠於空氣負離子反應器之控制效率之研究方法................61 3-4 實驗計算方法與指標參數........................................62 第四章 結果與討論.................................................65 4-1 前置實驗......................................................65 4-1-1 生物氣膠濃度背景值......................................65 4-1-2 生物氣膠穩定係數........................................68 4-1-3 空氣負離子濃度與放電電壓之關係..........................69 4-1-4 沾附奈米碳管之不鏽鋼針尖產生空氣負離子濃度穩定性測試....71 4-2 實驗結果分析..................................................76 4-2-1 不鏽鋼針尖與沾附奈米碳管之不鏽鋼針尖於不同電壓下放電產生空氣負離子對生物氣膠的控制效率............................76 4-2-1-1 空氣負離子對E.coli氣膠的控制效率...............77 4-2-1-2 空氣負離子對B.subtilis氣膠的控制效率...........79 4-2-1-3 空氣負離子對Yeast氣膠的控制效率................81 4-2-1-4 空氣負離子對P.citrinum氣膠的控制效率...........83 4-2-1-5 小結............................................85 4-2-2 空氣負離子對不同種類之生物氣膠之控制效率................86 4-2-3 不同相對濕度下空氣負離子對生物氣膠的控制效率............89 4-2-3-1 相對濕度對E.coli氣膠控制效率之影響.............89 4-2-3-2 相對濕度對B.subtilis氣膠控制效率之影響.........91 4-2-3-3 相對濕度對Yeast氣膠控制效率之影響..............92 4-2-3-4 相對濕度對P.citrinum氣膠控制效率之影響.........94 4-2-3-5 小結............................................95 4-2-4 空氣負離子對生物氣膠的控制效率與時間的關係.............100 4-3 奈米碳管空氣負離子產生裝置控制生物氣膠之整體效能評估.........106 第五章 結論與建議................................................108 5-1 結論.........................................................108 5-2 建議.........................................................111 圖目錄 圖 1.1 研究流程圖...................................................5 圖 2.1 不同粒徑之氣膠於肺泡區沉積的情形.............................7 圖 2.2 空氣負離子濃度分佈隨距離與相對濕度之關係....................31 圖 2.3 電暈放電產生空氣負離子之演化行為............................32 圖 2.4 多壁奈米碳管電子顯微圖......................................38 圖 2.5 電弧放電法裝置示意圖........................................39 圖 2.6 雷射蒸發法示意圖............................................40 圖 2.7 化學氣相沉積法(CVD)裝置示意圖...............................41 圖 2.8 三種奈米碳管之結構與掌性向量示意圖..........................43 圖 3.1 實驗系統圖..................................................50 圖 3.2 實驗流程圖..................................................51 圖 3.3 奈米碳管SEM圖..............................................54 圖 3.4 SKC Biosampler..............................................59 圖 3.5 SKC Biosampler...............................................59 圖 4.1 各生物氣膠物種在不同相對濕度下的霧化係數....................66 圖 4.2 各氣膠物種於反應器內之穩定係數隨時間的關係圖................68 圖 4.3 實驗室中空氣負離子背景濃度與時間的關係......................70 圖 4.4 奈米碳管尖端與不鏽鋼針尖放電電壓與空氣負離子產生量比較......70 圖 4.5 不鏽鋼針尖以2.4 kV之電壓產生空氣負離子濃度與時間之關係圖,RH=50% .........................................................71 圖 4.6 奈米碳管尖端於不同放電電壓下產生空氣負離子濃度與時間的關係圖,RH=50%..........................................................75 圖 4.7 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對E.coli氣膠之控制效率,RH=50%.......................................78 圖 4.8 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對B.subtilis氣膠控制效率, RH=50%.....................................80 圖 4.9 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對Yeast氣膠之控制效率,RH=50%..............................................82 圖 4.10 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對P.citrinm氣膠之控制效率,RH =50%....................................84 圖 4.11 空氣負離子對不同生物氣膠物種之控制效率比較,RH=50%..........87 圖 4.12 E.coli氣膠在不同相對濕度下之控制效率.......................90 圖 4.13 B.subtilis氣膠在不同相對濕度下之控制效率...................92 圖 4.14 Yeast氣膠在不同相對濕度下之控制效率........................93 圖 4.15 P.citrinum氣膠在不同相對濕度下之控制效率...................95 圖 4.16 不鏽鋼針尖放電電壓2.8kV產生空氣負離子濃度與時間之關係圖,RH=30%,距離40cm................................................96 圖 4.17 不鏽鋼針尖放電電壓2.8kV產生空氣負離子濃度與時間之關圖,RH=50%,距離40cm..........................................................96 圖 4.18 不鏽鋼針尖放電電壓2.8kV產生空氣負離子濃度與時間之關係圖,RH=70%,距離40cm................................................97 圖 4.19 E.coli氣膠之控制效率隨時間之關係圖,RH=50%.................101 圖 4.20 B.subtilis氣膠之控制效率隨時間之關係圖,RH=50%.............101 圖 4.21 Yeast氣膠之控制效率隨時間之關係圖,RH=50%..................102 圖 4.22 P.citrinum氣膠之控制效率隨時間之關係圖,RH=50%.............102 表目錄 表 2.1 生物氣膠粒徑分佈.............................................7 表 2.2 由真菌所引起的各種職業性肺部疾病............................16 表 2.3 室內環境中常見真菌與其所產生之黴菌毒素......................17 表 2.4 環保署室內空氣品質建議值....................................22 表 2.5 奈米碳管各項材料特性........................................47 表 3.1 本研究所使用之奈米碳管各項規格..............................54 表 3.2 生物氣膠粒徑分佈及基本特性..................................55 表 3.3 實驗條件....................................................61 表 4.1 在不同相對濕度下各生物氣膠物種的Cnebulizer與Cbackground ............67 表 4.2 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對E.coli氣膠之控制效率,RH=50%.......................................78 表 4.3 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對B.subtilis氣膠之控制效率,RH=50%...................................80 表 4.4 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對Yeast氣膠之控制效率,RH=50%..............................................82 表 4.5 不鏽鋼針尖與奈米碳管尖端在不同放電電壓下產生空氣負離子對P.citrinm氣膠之控制效率, RH=50%....................................84 表 4.6 空氣負離子對不同生物氣膠物種之控制效率比較,RH=50% ..........87 表 4.7 E.coli氣膠在不同相對濕度下之控制效率........................90 表 4.8 B.subtilis氣膠在不同相對濕度下之控制效率....................91 表 4.9 Yeast氣膠在不同相對濕度下之控制效率.........................93 表 4.10 P.citrinum氣膠在不同相對濕度下之控制效率...................94 表 4.11 不鏽鋼針尖放電電壓2.8kV產生空氣負離子對生物氣膠控制效率(ηNAI)隨時間之關係,RH=50% ..............................................103 表 4.12 奈米碳管尖端放電電壓1.8kV產生空氣負離子對生物氣膠控制效率(ηNAI)隨時間之關係,RH=50%............................................104 | |
dc.language.iso | zh-TW | |
dc.title | 奈米碳管空氣負離子產生裝置控制生物氣膠之研究 | zh_TW |
dc.title | Removal of Bioaerosols by Air Ionizer of Carbon Nanotubes | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾昭衡(Chao-Heng Tseng),吳致呈(Chih-Cheng Wu) | |
dc.subject.keyword | 生物氣膠,空氣負離子,奈米碳管,相對濕度, | zh_TW |
dc.subject.keyword | Bioaerosol,Negative air ion(NAI),Carbon nanotubes(CNTs),Relative humidity, | en |
dc.relation.page | 118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。