請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41067完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Chung-Tse Chen | en |
| dc.contributor.author | 陳中澤 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:14:55Z | - |
| dc.date.available | 2008-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | Chapter 1
[1]M. Sano, K. Miyamoto, H. Kato, T. Yao, J. Appl. Phys. 95 (2004) 5527. [2]Y. Cui, C. M. Lieber, Science 291 (2001) 831. [3]X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature (London) 409 (2001) 66. [4]M. H. Huang, S. Mao, H. Feick, J. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science. 292 (2001) 1897. [5]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisˇic´, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, W. K. Ge, J. Phys. Chem. B, 110 (2006) 20865 [6]L. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff, and M. Coulter, Appl. Phys. Lett. 82 (2003) 1096. [7]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76 (2000) 2011. [8]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Mater. 4 (2005) 455. [9]X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Science 303 (2004) 1348. Chapter 2 [1]C. Kittel, Introduction to Solid State Physics (Seventh Edition). [2]J. Wagner, Phys. Rev. B. 29, 2002 (1984). [3]S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectrosocpy (Academic Press, 1993). [4]B. G. Yacobi, D. B. Holt, Cathodoluminescence microscopy of inorganic solids, Plenum Press, New York and London (1990) [5]K. Kanaya, S. Okayama, J. Phys. D. 5 (1972) 43. [6]G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981). [7]R. A. Stradling, P. C. Klipstein, Growth and Characterization of Semiconductors. (Adam Hilger:September 1989). [8]B. V. Zeghbroeck, Principles of Semiconductor Devices (boulder, 1997). Chapter 3 [1]X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303 (2004) 1348. [2]M. H. Huang, S. Mao, H. Feick, J. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science. 292 (2001) 1897. [3]L. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff, and M. Coulter, Appl. Phys. Lett. 82 (2003) 1096. [4]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76 (2000) 2011. [5]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nature Mater. 4 (2005) 455. [6]Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291 (2001) 1947. [7]K. Govender, D. S. Boyle, P. O’Brien, D. Bink, D. West, and D. Coleman, Adv. Mater. 14 (2002) 1221. [8]S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, IEEE Trans. Nanotechnol. 2 (2003) 50. [9]Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. Cryst. Growth 234 (2002) 171. [10]T. T. Chen, C. L. Cheng, S.P. Fu, and Y. F. Chen, Nanotechnol. 18 (2007) 225705 [11]J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and C. L Chen, Appl. Phys. Lett. 81 (2002) 1312. [12]J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, Appl. Phys. Lett. 83 (2003) 4414. [13]Y. J. Zhang, N. L. Wang, S. P. Gao, R. G. He, S. Miao, J. Liu, J. Zhu, amd X. Zhang, Chem. Mater. 14 (2002) 3564. [14]S. H. Lin, H. P. Tang, Z. Z. Ye, H. P. He, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, Mater. Lett. 62 (2008) 603 [15]T. B. Hur, Y. H. Hwang, and H. K. Kim, J. Appl. Phys. 96 (2004) 1507 [16]J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang and E. L. Garfunkel, Appl. Phys. Lett. 83 (2003) 3401 [17]K. J. Kim and Y. R. Park, Appl. Phys. Lett. 78 (2001) 475 [18]Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys. 123 (2005) 134701 [19]R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64 (1960) 688 [20]H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Lett. B 56 (1997) 6942 [21]B. Lin and Z. Fu, Appl. Phys. Lett. 79 (2001) 943 [22]Y. Zou, Y. Wang, Z. Chen, J. Wang, and Y. Li, Mater. Lett. 59 (2005) 3042 Chapter 4 [1]P. X. Gao, Y. Ding, and Z. L. Wang, Nano Lett. 3 (2003) 1315. [2]Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291 (2001) 1947. [3]J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and C. L Chen, Appl. Phys. Lett. 81 (2002) 1312. [4]J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, Appl. Phys. Lett. 83 (2003) 4414. [5]Y. J. Zhang, N. L. Wang, S. P. Gao, R. G. He, S. Miao, J. Liu, J. Zhu, amd X. Zhang, Chem. Mater. 14 (2002) 3564. [6]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Webber, and P. D. Yang, Adv. Mater. 13 (2001) 113. [7]C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15 (2003) 838. [8]C. H. Liu, W. C. Yu, F. C. K. Au, J. X. Ding, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83 (2003) 3168. [9]J. J. Wu and S. C. Liu, Adv. Mater. 14 (2002) 215. [10]K. Govender, D. S. Boyle, P. O’Brien, D. Bink, D. West, and D. Coleman, Adv. Mater. 14 (2002) 1221. [11]X. F. Duan and C. M. Lieber, Adv. Mater. 2000, 279, 208. [12]Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. Cryst. Growth 234 (2002) 171. [13]Y.-Z. Yoo, Z.-W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki, and H. Koinuma, Appl, Phys, Lett. 81 (2002) 3798 [14]P.-A. Hu, Y.-Q. Liu, L. Fu, X.-B. Wang, and D.-B. Zhu, Appl. Phys. A 78 (2004) 15 [15]B. Y. Geng, G. Z. Wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett. 82 (2003) 4791 [16]J. Li, G. J. Fang, C. Li, L. Y. Yuan, L. Ai, N. S. Liu, D. S. Zhao, K. Ding, G. H. Li, and X. Z. Zhao, Appl. Phys. A, 90 (2008) 759 [17]P.-A. Hu, Y.-Q. Liu, L. Fu, X.-B. Wang, and D.-B. Zhu, Appl. Phys. A 80 (2005) 35 [18]J.A.Sans, A.Segura, M.Mollar, and B.Marı´, Thin Solid Films, 453 (2004) 251 [19]F. C. Frank, Disc. Faraday Soc. 5 (1949) 132; W. K. Burton, N. Cabrera, and F. C. Frank, Nature 163 (1949) 398 [20]A. R. Verma and S. Amelinckx, Nature, 169 (1952) 580 [21]M. Iwata, Y. Yoshida, M. Hasegawa, Y. Ito, I. Hirabayashi, and Y. Takai, Jpn. J. Appl. Phys. 37 (1998) L715 [22]M. Ranganathan, D. B. Dougherty, W. G. Cullen, and T. Zhao, J. D. Weeks, E. D. Williams, Phys. Rev. Lett. 95 (2005) 225505 [23]Y. Cui and L. Li, Phys. Rev. B 66 (2002) 155330 [24]S. Keller, U. K. Mishra, S. P. Denbaars, and W. Seifert, Jpn. J. Appl. Phys. 37 (1998) L431 [25]K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Mater. Chem. Phys., 82 (2003) 718 [26]S. Amelinckx, Nature 169 (1952) 580 [27]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisˇic´, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, J. Phys. Chem. B, 110 (2006) 20865 [28]D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-zaera, V. Munoz-sanjose, T. Frank, and G. Pensl, Appl, Phys, A, A 88 (2007) 147 [29]B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79 (2001) 943 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41067 | - |
| dc.description.abstract | 在本文中,我們以硫化鋅(ZnS)為原料,使用化學氣相沈積法,在硫化鋅高溫蒸發後得到我們想要的氧化鋅產物。本文一共分為兩個部分,第一部分是有關於氧化鋅奈米針,以及加入銦之後生長成氧化鋅奈米線的製程,以及其光學性質的探討;第二部分是有關於在雲母上製成氧化鋅的奈米螺旋物,並探究其生長機制,以及生長基板對於生長物的影響。
在第一部分裡,我們將介紹如何製作氧化鋅奈米針及含銦的氧化鋅奈米線。我們發現在生長氧化鋅的過程中加入銦會有助於氧化鋅晶體生長得更完整,並且因此讓其結構性更好,使得氧化鋅的紫外線發光更強,並且抑制其所發出的可見光,從而讓氧化鋅可以因為其發光特性而有更好的應用。在第二部分裡,我們會說明如何製成氧化鋅、硫化鋅複合物的螺旋結構,並且討論其生長機制,以及證明氧化鋅所用來生長的基板確實會對於氧化鋅的生成產生影響。 本論文將利用SEM、Raman scattering、XRD、EDX、catholuminescence以及photoluminescence的實驗結果來證明我們的推論。 | zh_TW |
| dc.description.abstract | This paper has two parts. Part 1 is about the morphology and optical properties of undoped and In-doped ZnO nanostructures synthesized on upside-down silica; part 2 is about the spiral growth of nanostructures of ZnS-ZnO composites on mica. ZnS is used as sources. The ZnO nanostructures were all synthesized by a no-catalyst thermal evaporation method. The morphology of the samples was examined by scanning electron microscope (SEM). X-ray diffraction (XRD), Raman scattering and electronic energy-dispersive X-ray experiments were also performed. The optical properties were investigated by cathodoluminescence and photoluminescence; the spectra will be shown.
In part 1, incisive undoped ZnO nanopins were fabricated, and shows the result that doping indium will change the morphology of ZnO nanopins to nanowires. It is reported that In inclusion will improve the crystallization of zinc oxide, and enhance the UV emission of ZnO. The green luminescence could be diminished by inclusion of In, and then the origin of the defect of ZnO nanostructures will be discussed. In part 2, we will show that different substrates can influence the morphology, orientation and optical properties of ZnO nanostructures. The photoluminescence spectra indicate that the ZnO/ZnS composites have potential application for green light emitter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:14:55Z (GMT). No. of bitstreams: 1 ntu-97-R95222047-1.pdf: 2250966 bytes, checksum: 554e3a4ced0153d7fc54b5bda581f5f5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書............................I
致謝.....................................II Abstract................................III 摘要.....................................IV 1.Introduction............................1 Reference...............................3 2.Theoretical Background..................4 2.1.Scanning Electron Microscopy..........4 2.2.Photoluminescence Spectroscopy.......11 2.2.1.Photoluminescence Emission.........11 2.2.2.Recombination processes............15 2.2.3.Photoluminescence Apparatus........17 2.3.Cathodolumniescence Spectroscopy.....19 2.4.Energy-dispersive X-ray Spectroscopy.22 2.5.Raman Spectroscopy...................24 2.5.1.Anti-Stokes and Stokes lines.......25 2.5.2.Raman Scattering Apparatus.........27 Reference..............................31 3.Effects of In inclusion on the growth of ZnO nanostructures...........................32 3.1.Introduction.........................32 3.2.Experimental Details.................33 3.3.Results and Discussion...............34 3.4.Summary..............................37 Reference..............................42 4.Spiral Growth of Nanostructured ZnS-ZnO Composites on Mica.....................................44 4.1.Introduction.........................44 4.2.Experimental Details.................44 4.3.Results and Discussion...............45 4.4.Summary..............................48 Reference..............................53 5.Conclusion.............................56 | |
| dc.language.iso | en | |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 螺旋生長 | zh_TW |
| dc.subject | 光學特性 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 銦 | zh_TW |
| dc.subject | 雲母 | zh_TW |
| dc.subject | 硫化鋅粉 | zh_TW |
| dc.subject | nanostructures | en |
| dc.subject | spiral growth | en |
| dc.subject | mica | en |
| dc.subject | ZnO | en |
| dc.subject | ZnS powder | en |
| dc.subject | In | en |
| dc.subject | optical property | en |
| dc.title | 含銦氧化鋅之特殊光學性質與氧化鋅/硫化鋅複合物之螺旋生長研究 | zh_TW |
| dc.title | Optical Properties of ZnO with In inclusion and Spiral Growth of ZnO/ZnS Composites on Mica | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),林泰源(Tai-Yuan Lin) | |
| dc.subject.keyword | 氧化鋅,硫化鋅粉,銦,奈米結構,光學特性,雲母,螺旋生長, | zh_TW |
| dc.subject.keyword | ZnO,ZnS powder,In,nanostructures,optical property,mica,spiral growth, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
