Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜文
dc.contributor.authorNai-Tzu Chenen
dc.contributor.author陳乃慈zh_TW
dc.date.accessioned2021-06-14T17:14:45Z-
dc.date.available2011-10-03
dc.date.copyright2011-10-03
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citationAdeleke, A., Pruckler, J., Benson, R., Rowbotham, T., Halablab, M. and Fields, B. (1996) Legionella-like amebal pathogens--phylogenetic status and possible role in respiratory disease. Emerg Infect Dis 2, 225-230.
Allegra, S., Berger, F., Berthelot, P., Grattard, F., Pozzetto, B. and Riffard, S. (2008) Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol 74, 7813-7816.
Alleron, L., Merlet, N., Lacombe, C. and Frere, J. (2008) Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 57, 497-502.
Arain, M.A., Ahmed, M. and Khan, M.A. (2000) Some physico-chemical characteristics of soil in sugarcane cultivated areas of Nawabshah, Sindh, Pakistan. Pak J Bot 32, 93-100.
Arbeli, Z. and Fuentes, C.L. (2007) Improved purification and PCR amplification of DNA from environmental samples. FEMS Microbiol Lett 272, 269-275.
Bachoon, D.S., Otero, E. and Hodson, R.E. (2001) Effects of humic substances on fluorometric DNA quantification and DNA hybridization. J Microbiol Methods 47, 73-82.
Bargellini, A., I. Marchesi, E. Righi, A. Ferrari, S. Cencetti, P. Borella, and Rovesti, S. (2011). Parameters predictive of Legionella contamination in hot water systems: association with trace elements and heterotrophic plate counts. Water Res 45, 2315-2321.
Behets, J., Declerck, P., Delaedt, Y., Creemers, B. and Ollevier, F. (2007a) Development and evaluation of a Taqman duplex real-time PCR quantification method for reliable enumeration of Legionella pneumophila in water samples. J Microbiol Methods 68, 137-144.
Behets, J., Declerck, P., Delaedt, Y., Verelst, L. and Ollevier, F. (2007b) A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples. Water Res 41, 118-126.
Bender, L., Ott, M., Marre, R. and Hacker, J. (1990) Genome analysis of Legionella ssp. by orthogonal field alternation gel-electrophoresis (OFAGE). FEMS Microbiol Lett 72, 253-257.
Bentham, R.H. and Broadbent, C.R. (1993) A model for autumn outbreaks of Legionnaires' disease associated with cooling towers, linked to system operation and size. Epidemiol Infect 111, 287-295.
Berk, S.G., Gunderson, J.H., Newsome, A.L., Farone, A.L., Hayes, B.J., Redding, K.S., Uddin, N., Williams, E.L., Johnson, R.A., Farsian, M., Reid, A., Skimmyhorn, J. and Farone, M.B. (2006) Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens. Environ Sci Technol 40, 7440-7444.
Boccuzzi, V.M., Straube, W.L., Ravel, J., Colwell, R.R. and Hill, R.T. (1998) Preparation of DNA extracted from environmental water samples for PCR amplification. J Microbiol Methods 31, 193-199.
Bonetta, S., Ferretti, E., Balocco, F. and Carraro, E. (2010) Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. J Appl Microbiol 108, 1576-1583.
Borella, P., Montagna, M.T., Romano-Spica, V., Stampi, S., Stancanelli, G., Triassi, M., Neglia, R., Marchesi, I., Fantuzzi, G., Tato, D., Napoli, C., Quaranta, G., Laurenti, P., Leoni, E., De Luca, G., Ossi, C., Moro, M. and Ribera D'Alcala, G. (2004) Legionella infection risk from domestic hot water. Emerg Infect Dis 10, 457-464.
Borella, P., Montagna, M.T., Stampi, S., Stancanelli, G., Romano-Spica, V., Triassi, M., Marchesi, I., Bargellini, A., Tato, D., Napoli, C., Zanetti, F., Leoni, E., Moro, M., Scaltriti, S., Ribera D'Alcala, G., Santarpia, R. and Boccia, S. (2005) Legionella contamination in hot water of Italian hotels. Appl Environ Microbiol 71, 5805-5813.
Braid, M.D., Daniels, L.M. and Kitts, C.L. (2003) Removal of PCR inhibitors from soil DNA by chemical flocculation. J Microbiol Methods 52, 389-393.
Calvo-Bado, L.A., Morgan, J.A., Sergeant, M., Pettitt, T.R. and Whipps, J.M. (2003) Molecular characterization of Legionella populations present within slow sand filters used for fungal plant pathogen suppression in horticultural crops. Appl Environ Microbiol 69, 533-541.
Carducci, A., Verani, M. and Battistini, R. (2010) Legionella in industrial cooling towers: monitoring and control strategies. Lett Appl Microbiol 50, 24-29.
Casati, S., Gioria-Martinoni, A. and Gaia, V. (2009) Commercial potting soils as an alternative infection source of Legionella pneumophila and other Legionella species in Switzerland. Clin Microbiol Infect 15, 571-575.
Cawthorn, D.M. and Witthuhn, R.C. (2008) Selective PCR detection of viable Enterobacter sakazakii cells utilizing propidium monoazide or ethidium bromide monoazide. J Appl Microbiol 105, 1178-1185.
CDC (1997) Follow-up on respiratory illness--Philadelphia. 1977. MMWR Morb Mortal Wkly Rep 46, 50-56.
CDC (2005) Legionnaires' disease associated with potable water in a hotel--Ocean City, Maryland, October 2003-February 2004. MMWR Morb Mortal Wkly Rep 54, 165-168.
Chandler, D.P., Schreckhise, R.W., Smith, J.L. and Bolton, H., Jr. (1997) Electroelution to remove humic compounds from soil DNA and RNA extracts. J Microbiol Methods 28, 11-19.
Chang, B., Sugiyama, K., Taguri, T., Amemura-Maekawa, J., Kura, F. and Watanabe, H. (2009) Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR. Appl Environ Microbiol 75, 147-153.
Chang, C.W. and Chou, F.C. (2011) Methodologies for quantifying culturable, viable, and total Legionella pneumophila in indoor air. Indoor Air In Press.
Chang, C.W., Hwang, Y.H., Cheng, W.Y. and Chang, C.P. (2007) Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J Appl Microbiol 102, 1636-1644.
Chang, C.W., Kao, C.H. and Liu, Y.F. (2009) Heterogeneity in chlorine susceptibility for Legionella pneumophila released from Acanthamoeba and Hartmannella. J Appl Microbiol 106, 97-105.
Chang, C.W., Wu, Y.C. and Ming, K.W. (2010) Evaluation of real-time PCR methods for quantification of Acanthamoeba in anthropogenic water and biofilms. J Appl Microbiol 109, 799-807.
Chen, N.T. and Chang, C.W. (2010) Rapid quantification of viable legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR. J Appl Microbiol 109, 623-634.
Chen, N.T., Chang, C.W. and Wu, J.D. (2011) Evaluation of DNA isolation procedures for detecting and quantifying environmental Legionella by real-time quantitative PCR. Water Sci Technol In press.
Chen, Y.S., Liu, Y.C., Lee, S.S., Tsai, H.C., Wann, S.R., Kao, C.H., Chang, C.L., Huang, W.K., Huang, T.S., Chao, H.L., Li, C.H., Ke, C.M. and Lin, Y.S. (2005) Abbreviated duration of superheat-and-flush and disinfection of taps for Legionella disinfection: lessons learned from failure. Am J Infect Control 33, 606-610.
Cirillo, J.D., Falkow, S. and Tompkins, L.S. (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62, 3254-3261.
Clesceri, L.A., Greenberg, E. and Eaton, A.D. eds. (1998) Standard methods for the examination of water and wastewater. Washington, D.C., USA: American Public Health Association. American Water Works Association. Water Pollution Control Federation.
Cooper, I.R., White, J., Mahenthiralingam, E. and Hanlon, G.W. (2008) Long-term persistence of a single Legionella pneumophila strain possessing the mip gene in a municipal shower despite repeated cycles of chlorination. J Hosp Infect 70, 154-159.
Costerton, J.W. (1999) Introduction to biofilm. Int J Antimicrob Agents 11, 217-221.
Darelid, J., Bengtsson, L., Gastrin, B., Hallander, H., Lofgren, S., Malmvall, B.E., Olinder-Nielsen, A.M. and Thelin, A.C. (1994) An outbreak of Legionnaires' disease in a Swedish hospital. Scand J Infect Dis 26, 417-425.
Declerck, P., Behets, J., van Hoef, V. and Ollevier, F. (2007) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41, 3159-3167.
Delgado-Viscogliosi, P., Simonart, T., Parent, V., Marchand, G., Dobbelaere, M., Pierlot, E., Pierzo, V., Menard-Szczebara, F., Gaudard-Ferveur, E., Delabre, K. and Delattre, J.M. (2005) Rapid method for enumeration of viable Legionella pneumophila and other Legionella spp. in water. Appl Environ Microbiol 71, 4086-4096.
Delgado-Viscogliosi, P., Solignac, L. and Delattre, J.M. (2009) Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl Environ Microbiol 75, 3502-3512.
Devos, L., Clymans, K., Boon, N. and Verstraete, W. (2005) Evaluation of nested PCR assays for the detection of Legionella pneumophila in a wide range of aquatic samples. J Appl Microbiol 99, 916-925.
Doleans, A., Aurell, H., Reyrolle, M., Lina, G., Freney, J., Vandenesch, F., Etienne, J. and Jarraud, S. (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42, 458-460.
Edagawa, A., Kimura, A., Doi, H., Tanaka, H., Tomioka, K., Sakabe, K., Nakajima, C. and Suzuki, Y. (2008) Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol 105, 2104-2114.
EPA (1999) Legionella: human health criteria document. EPA-822-R-99-001. Washington, DC, USA: US Environmental Protection Agency
EWGLI (2005) European guidelines for control and prevention of travel associated Legionnaires' disease. London, UK: European Surveillance Scheme for Travel Associated Legionnaires' Disease and European Working Group for Legionella Infections.
Farjalla, V.F., Azevedo, D.A., Esteves, F.A., Bozelli, R.L., Roland, F. and Enrich-Prast, A. (2006) Influence of hydrological pulse on bacterial growth and DOC uptake in a clear-water Amazonian lake. Microb Ecol 52, 334-344.
Fields, B.S., Benson, R.F. and Besser, R.E. (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15, 506-526.
Fisman, D.N., Lim, S., Wellenius, G.A., Johnson, C., Britz, P., Gaskins, M., Maher, J., Mittleman, M.A., Spain, C.V., Haas, C.N. and Newbern, C. (2005) It's not the heat, it's the humidity: wet weather increases legionellosis risk in the greater Philadelphia metropolitan area. J Infect Dis 192, 2066-2073.
Fiume, L., Bucci Sabattini, M.A. and Poda, G. (2005) Detection of Legionella pneumophila in water samples by species-specific real-time and nested PCR assays. Lett Appl Microbiol 41, 470-475.
Flannery, B., Gelling, L.B., Vugia, D.J., Weintraub, J.M., Salerno, J.J., Conroy, M.J., Stevens, V.A., Rose, C.E., Moore, M.R., Fields, B.S. and Besser, R.E. (2006) Reducing Legionella colonization in water systems with monochloramine. Emerg Infect Dis 12, 588-596.
Fliermans, C.B. (1996) Ecology of Legionella: from data to knowledge with a little wisdom. Microb Ecol 32, 203-228.
Garcia-Fulgueiras, A., Navarro, C., Fenoll, D., Garcia, J., Gonzalez-Diego, P., Jimenez-Bunuales, T., Rodriguez, M., Lopez, R., Pacheco, F., Ruiz, J., Segovia, M., Balandron, B. and Pelaz, C. (2003) Legionnaires' disease outbreak in Murcia, Spain. Emerg Infect Dis 9, 915-921.
Gilmour, M.W., Bernard, K., Tracz, D.M., Olson, A.B., Corbett, C.R., Burdz, T., Ng, B., Wiebe, D., Broukhanski, G., Boleszczuk, P., Tang, P., Jamieson, F., Van Domselaar, G., Plummer, F.A. and Berry, J.D. (2007) Molecular typing of a Legionella pneumophila outbreak in Ontario, Canada. J Med Microbiol 56, 336-341.
Gould, D. (2003) Legionnaires' disease. Nurs Stand 17, 41-44.
Gregory, J.B., Litaker, R.W. and Noble, R.T. (2006) Rapid one-step quantitative reverse transcriptase PCR assay with competitive internal positive control for detection of enteroviruses in environmental samples. Appl Environ Microbiol 72, 3960-3967.
Heijnen, L. and Medema, G. (2006) Quantitative detection of E. coli, E. coli O157 and other shiga toxin producing E. coli in water samples using a culture method combined with real-time PCR. J Water Health 4, 487-498.
Hicks, L.A., Rose, C.E., Jr., Fields, B.S., Drees, M.L., Engel, J.P., Jenkins, P.R., Rouse, B.S., Blythe, D., Khalifah, A.P., Feikin, D.R. and Whitney, C.G. (2007) Increased rainfall is associated with increased risk for legionellosis. Epidemiol Infect 135, 811-817.
Hirata, S. (1983) Molecular weight and trace metal distributions in fulvic and humic acid fractions of coastal marine sediments. J Oceanogr Soc Japan 39, 203-210.
Inoue, D., Tsutsui, H., Yamazaki, Y., Sei, K., Soda, S., Fujita, M. and Ike, M. (2008) Application of real-time polymerase chain reaction (PCR) coupled with ethidium monoazide treatment for selective quantification of viable bacteria in aquatic environment. Water Sci Technol 58, 1107-1112.
ISO11731 (1998) Water quality - Detection and enumeration of Legionella. Geneva, Switzerland: International Organization for Standardization.
Johnston, C., Ufnar, J.A., Griffith, J.F., Gooch, J.A. and Stewart, J.R. (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109, 1946-1956.
Joly, P., Falconnet, P.A., Andre, J., Weill, N., Reyrolle, M., Vandenesch, F., Maurin, M., Etienne, J. and Jarraud, S. (2006) Quantitative real-time Legionella PCR for environmental water samples: data interpretation. Appl Environ Microbiol 72, 2801-2808.
Jones, T.F., Benson, R.F., Brown, E.W., Rowland, J.R., Crosier, S.C. and Schaffner, W. (2003) Epidemiologic investigation of a restaurant-associated outbreak of Pontiac fever. Clin Infect Dis 37, 1292-1297.
Karagiannis, I., Brandsema, P. and van der Sande, M. (2009) Warm, wet weather associated with increased Legionnaires' disease incidence in the Netherlands. Epidemiol Infect 137, 181-187.
Kim, B.R., Anderson, J.E., Mueller, S.A., Gaines, W.A. and Kendall, A.M. (2002) Literature review - efficacy of various disinfectants against Legionella in water systems. Water Res 36, 4433-4444.
Konishi, T., Yamashiro, T., Koide, M. and Nishizono, A. (2006) Influence of temperature on growth of Legionella pneumophila biofilm determined by precise temperature gradient incubator. J Biosci Bioeng 101, 478-484.
Kreader, C.A. (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62, 1102-1106.
Kuiper, M.W., Valster, R.M., Wullings, B.A., Boonstra, H., Smidt, H. and van der Kooij, D. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl Environ Microbiol 72, 5750-5756.
Kuiper, M.W., Wullings, B.A., Akkermans, A.D., Beumer, R.R. and van der Kooij, D. (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70, 6826-6833.
LaMontagne, M.G., Michel, F.C., Jr., Holden, P.A. and Reddy, C.A. (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49, 255-264.
Larson, R.A., Lloyd, R.E., Marley, K.A. and Tuveson, R.W. (1992) Ferric-ion-photosensitized damage to DNA by hydroxyl and non-hydroxyl radical mechanisms. J Photochem Photobiol B 14, 345-357.
Lasheras, A., Boulestreau, H., Rogues, A.M., Ohayon-Courtes, C., Labadie, J.C. and Gachie, J.P. (2006) Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control 34, 520-525.
Lau, H.Y. and Ashbolt, N.J. (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107, 368-378.
Lee, J.L. and Levin, R.E. (2007) Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction. Int J Food Microbiol 118, 312-317.
Lee, J.L. and Levin, R.E. (2008) Discrimination of gamma-irradiated and nonirradiated Vibrio vulnificus by using real-time polymerase chain reaction. J Appl Microbiol 104, 728-734.
Lee, J.L. and Levin, R.E. (2009) A comparative study of the ability of EMA and PMA to distinguish viable from heat killed mixed bacterial flora from fish fillets. J Microbiol Methods 76, 93-96.
Lee, J.V., Lai, S., Exner, M., Lenz, J., Gaia, V., Casati, S., Hartemann, P., Luck, C., Pangon, B., Ricci, M.L., Scaturro, M., Fontana, S., Sabria, M., Sanchez, I., Assaf, S. and Surman-Lee, S. (2011) An international trial of quantitative PCR for monitoring Legionella in artificial water systems. J Appl Microbiol In press.
Leff, L.G., Dana, J.R., McArthur, J.V. and Shimkets, L.J. (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61, 1141-1143.
Legnani, P.P., Leoni, E. and Corradini, N. (2002) Legionella contamination of hospital water supplies: monitoring of private healthcare facilities in Bologna, Italy. J Hosp Infect 50, 220-223.
Leoni, E., De Luca, G., Legnani, P.P., Sacchetti, R., Stampi, S. and Zanetti, F. (2005) Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital hot water systems. J Appl Microbiol 98, 373-379.
Levi, K., Smedley, J. and Towner, K.J. (2003) Evaluation of a real-time PCR hybridization assay for rapid detection of Legionella pneumophila in hospital and environmental water samples. Clin Microbiol Infect 9, 754-758.
Liu, Z., Lin, Y.E., Stout, J.E., Hwang, C.C., Vidic, R.D. and Yu, V.L. (2006) Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system. J Appl Microbiol 101, 437-442.
Lu, H.F., Tsou, M.F., Huang, S.Y., Tsai, W.C., Chung, J.G. and Cheng, K.S. (2001) Factors affecting the recovery of Legionella pneumophila serogroup 1 from cooling tower water systems. J Microbiol Immunol Infect 34, 161-166.
Luo, L.X., Walters, C., Bolkan, H., Liu, X.L. and Li, J.Q. (2008) Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathol 57, 332-337.
Maaroufi, Y., de Bruyne, J.M., Duchateau, V., Scheen, R. and Crokaert, F. (2006) Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunol Med Microbiol 48, 183-191.
Martinelli, F., Caruso, A., Moschini, L., Turano, A., Scarcella, C. and Speziani, F. (2000) A comparison of Legionella pneumophila occurrence in hot water tanks and instantaneous devices in domestic, nosocomial, and community environments. Curr Microbiol 41, 374-376.
Matheson, C.D., Marion, T.E., Hayter, S., Esau, N., Fratpietro, R. and Vernon, K.K. (2009) Technical note: removal of metal ion inhibition encountered during DNA extraction and amplification of copper-preserved archaeological bone using size exclusion chromatography. Am J Phys Anthropol 140, 384-391.
McNally, C., Hackman, B., Fields, B.S. and Plouffe, J.F. (2000) Potential importance of Legionella species as etiologies in community acquired pneumonia (CAP). Diagn Microbiol Infect Dis 38, 79-82.
Miller, L.A., Beebe, J.L., Butler, J.C., Martin, W., Benson, R., Hoffman, R.E. and Fields, B.S. (1993) Use of polymerase chain reaction in an epidemiologic investigation of Pontiac fever. J Infect Dis 168, 769-772.
Morio, F., Corvec, S., Caroff, N., Le Gallou, F., Drugeon, H. and Reynaud, A. (2008) Real-time PCR assay for the detection and quantification of Legionella pneumophila in environmental water samples: utility for daily practice. Int J Hyg Environ Health 211, 403-411.
Mouchtouri, V., Velonakis, E. and Hadjichristodoulou, C. (2007a) Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species. Am J Infect Control 35, 623-627.
Mouchtouri, V., Velonakis, E., Tsakalof, A., Kapoula, C., Goutziana, G., Vatopoulos, A., Kremastinou, J. and Hadjichristodoulou, C. (2007b) Risk factors for contamination of hotel water distribution systems by Legionella species. Appl Environ Microbiol 73, 1489-1492.
Mouchtouri, V.A., Goutziana, G., Kremastinou, J. and Hadjichristodoulou, C. (2009) Legionella species colonization in cooling towers: Risk factors and assessment of control measures. Am J Infect Control 38, 50-55.
Ning, J., Liebich, J., Kastner, M., Zhou, J., Schaffer, A. and Burauel, P. (2009) Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Appl Microbiol Biotechnol 82, 983-993.
Nocker, A., Cheung, C.Y. and Camper, A.K. (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67, 310-320.
Pan, Y. and Breidt, F., Jr. (2007) Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73, 8028-8031.
Pasculle, W. (2000) Update on Legionella. Clin Microbiol Newsletter 22, 97-101.
Pisz, J.M., Lawrence, J.R., Schafer, A.N. and Siciliano, S.D. (2007) Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide. J Microbiol Methods 71, 312-318.
Raggam, R.B., Leitner, E., Muhlbauer, G., Berg, J., Stocher, M., Grisold, A.J., Marth, E. and Kessler, H.H. (2002) Qualitative detection of Legionella species in bronchoalveolar lavages and induced sputa by automated DNA extraction and real-time polymerase chain reaction. Med Microbiol Immunol 191, 119-125.
Rawsthorne, H. and Phister, T.G. (2009) Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR. Int J Food Microbiol 131, 246-250.
Reeves, M.W., Pine, L., Hutner, S.H., George, J.R. and Harrell, W.K. (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13, 688-695.
Reuter, T., Xu, W., Alexander, T.W., Stanford, K., Xu, Y. and McAllister, T.A. (2009) Purification of polymerase chain reaction (PCR)-amplifiable DNA from compost piles containing bovine mortalities. Bioresour Technol 100, 3343-3349.
Rivera, J.M., Aguilar, L., Granizo, J.J., Vos-Arenilla, A., Gimenez, M.J., Aguiar, J.M. and Prieto, J. (2007) Isolation of Legionella species/serogroups from water cooling systems compared with potable water systems in Spanish healthcare facilities. J Hosp Infect 67, 360-366.
Rudi, K., Moen, B., Dromtorp, S.M. and Holck, A.L. (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71, 1018-1024.
Sene, D., Bossi, P., Thomas, L., Ghosn, J., Zeller, V., Caumes, E., Katlama, C. and Bricaire, F. (2002) Legionellosis in HIV-1 infected patients. 4 case reports. Presse Med 31, 356-358.
Shearer, B.G. (1996) Biofilm and the dental office. J Am Dent Assoc 127, 181-189.
Somerville, C.C., Knight, I.T., Straube, W.L. and Colwell, R.R. (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55, 548-554.
Stach, J.E., Bathe, S., Clapp, J.P. and Burns, R.G. (2001) PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbioly Ecol 36, 139-151.
States, S.J., Conley, L.F., Kuchta, J.M., Oleck, B.M., Lipovich, M.J., Wolford, R.S., Wadowsky, R.M., McNamara, A.M., Sykora, J.L., Keleti, G. and Yee, R.B. (1987a) Survival and multiplication of Legionella pneumophila in municipal drinking water systems. Appl Environ Microbiol 53, 979-986.
States, S.J., Conley, L.F., Towner, S.G., Wolford, R.S., Stephenson, T.E., McNamara, A.M., Wadowsky, R.M. and Yee, R.B. (1987b) An alkaline approach to treating cooling towers for control of Legionella pneumophila. Appl Environ Microbiol 53, 1775-1779.
Steinert, M., Emody, L., Amann, R. and Hacker, J. (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl Environ Microbiol 63, 2047-2053.
Stout, J.E., Brennen, C. and Muder, R.R. (2000) Legionnaires' disease in a newly constructed long-term care facility. J Am Geriatr Soc 48, 1589-1592.
Templeton, K.E., Scheltinga, S.A., Sillekens, P., Crielaard, J.W., van Dam, A.P., Goossens, H. and Claas, E.C. (2003) Development and clinical evaluation of an internally controlled, single-tube multiplex real-time PCR assay for detection of Legionella pneumophila and other Legionella species. J Clin Microbiol 41, 4016-4021.
Tossa, P., Deloge-Abarkan, M., Zmirou-Navier, D., Hartemann, P. and Mathieu, L. (2006) Pontiac fever: an operational definition for epidemiological studies. BMC Public Health 6, 112.
Tsai, Y.L. and Olson, B.H. (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57, 1070-1074.
Tsai, Y.L. and Olson, B.H. (1992) Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol 58, 754-757.
van Doorn, R., Klerks, M.M., van Gent-Pelzer, M.P., Speksnijder, A.G., Kowalchuk, G.A. and Schoen, C.D. (2009) Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel internal amplification control approach using Biotrove OpenArrays. Appl Environ Microbiol 75, 7253-7260.
van Loock, M., Verminnen, K., Messmer, T.O., Volckaert, G., Goddeeris, B.M. and Vanrompay, D. (2005) Use of a nested PCR-enzyme immunoassay with an internal control to detect Chlamydophila psittaci in turkeys. BMC Infect Dis 5, 76.
Visca, P., Goldoni, P., Luck, P.C., Helbig, J.H., Cattani, L., Giltri, G., Bramati, S. and Castellani Pastoris, M. (1999) Multiple types of Legionella pneumophila serogroup 6 in a hospital heated-water system associated with sporadic infections. J Clin Microbiol 37, 2189-2196.
Wang, L. and Mustapha, A. (2010) EMA-real-time PCR as a reliable method for detection of viable Salmonella in chicken and eggs. J Food Sci 75, M134-139.
Wang, S. and Levin, R.E. (2006) Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J Microbiol Methods 64, 1-8.
Watson, R.J. and Blackwell, B. (2000) Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol 46, 633-642.
Weber, J.H. and Wilson, S.A. (1975) Isolation and characterization of fulvic acid and humic acid from river water. Water Res 9, 1079-1084.
Weiss, A., Jerome, V. and Freitag, R. (2007) Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants. J Chromatogr B Analyt Technol Biomed Life Sci 853, 190-197.
Wellinghausen, N., Frost, C. and Marre, R. (2001) Detection of legionellae in hospital water samples by quantitative real-time LightCycler PCR. Appl Environ Microbiol 67, 3985-3993.
Wery, N., Bru-Adan, V., Minervini, C., Delgenes, J.P., Garrelly, L. and Godon, J.J. (2008) Dynamics of Legionella spp. and bacterial populations during the proliferation of L. pneumophila in a cooling tower facility. Appl Environ Microbiol 74, 3030-3037.
WHO (2007) Legionella and the prevention of legionellosis. Bartram, J., Chartier, Y., Lee, J.V., Pond, K. and Surman-Lee, S. (eds.) Geneva, Switzerland: World Health Organization.
Wilson, I.G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63, 3741-3751.
Wu, Q. and Zhao, X.H. (2009) Study on bacteria in water and biofilm of a pilot distribution networks. In 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing, China: ICBBE.
Wullings, B.A. and van der Kooij, D. (2006) Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 degrees C. Appl Environ Microbiol 72, 157-166.
Yamamoto, H., Sugiura, M., Kusunoki, S., Ezaki, T., Ikedo, M. and Yabuuchi, E. (1992) Factors stimulating propagation of legionellae in cooling tower water. Appl Environ Microbiol 58, 1394-1397.
Zacheus, O.M. and Martikainen, P.J. (1996) Effect of heat flushing on the concentrations of Legionella pneumophila and other heterotrophic microbes in hot water systems of apartment buildings. Can J Microbiol 42, 811-818.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41064-
dc.description.abstract即時定量聚合酶鏈鎖反應技術 (qPCR) 廣泛應用於定量退伍軍人菌。然而,其會受到環境qPCR抑制物的干擾,且無法區分具活性及不具活性的細菌。為了改善此qPCR的限制,本研究首先進行DNA分離處理程序最佳化,以添加腐植酸 (≤ 126.8 mg L-1)、鐵離子 (≤ 3 mg L-1) 或腐植酸/鐵離子 (≤ 3/100 mg L-1) 之樣本進行評估,並發現QiAamp DNA Mini Kit (Q) 為以qPCR定量退伍軍人菌之最佳DNA萃取方法。方法Q可有效將腐植酸由1.9-126.8 mg L-1移除至低於偵測下限 (< 1 mg L-1),並可獲得最高之DNA產量。在稀釋處理 (10或100倍) 後,方法Q可去除qPCR抑制,且具有最高之退伍軍人菌檢測濃度。進一步的冷卻水塔水樣驗證試驗則發現,以qPCR檢測Legionella pneumophila及檢測/定量Legionella spp.,樣本應先以方法Q進行DNA萃取,所得DNA於10倍稀釋後以qPCR分析。而L. pneumophila陽性樣本則將DNA進行100倍稀釋處理,並重新進行qPCR分析以獲得準確的L. pneumophila濃度。
本研究並以含有L. pneumophila DNA的樣本添加或不添加腐植酸或鐵離子進行試驗,以評估internal inhibition control (IIC) 定量qPCR抑制程度的能力。結果顯示IIC方法所測得的qPCR抑制程度與qPCR測得的L. pneumophila DNA量呈現顯著負相關 (r = -0.917)。另外,此劑量效應關係亦顯現於含有可測得的退伍軍人菌且具有> 5%以上qPCR抑制程度的冷卻水塔及熱水系統樣本 (r = -0.635 and -0.826)。這樣的結果證明了IIC方法具有定量> 5%以上qPCR抑制程度的能力。此外,DNA稀釋處理顯著降低環境樣本的qPCR抑制程度,並增加qPCR測得的退伍軍人菌濃度,顯現了IIC方法監測處理方法減緩qPCR程度的能力。
為了定量具活性的退伍軍人菌,本研究進行了結合ethidium monoazide (EMA, 0.9-45.5 μg mL-1) 與qPCR的技術 (EMA-qPCR) 最佳化,並評估其於冷卻水塔及熱水系統水樣和生物膜的應用性。qPCR結合2.3 μg mL-1的EMA為檢測退伍軍人菌之最佳EMA-qPCR條件,其可準確定量具活性之L. pneumophila、L. anisa和legionellae-like amoebal pathogens 6,且不會受到樣本中所含加熱處理過之退伍軍人菌、未加熱處理之其他細菌以及冷卻水塔水樣基質的干擾 (P > 0.05)。另外,將EMA-qPCR應用於冷卻水塔及熱水系統水樣和生物模,其測得的具活性退伍軍人菌濃度於大部分的樣本都高於培養法測得具可培養性的退伍軍人菌濃度,而低於qPCR測得的總退伍軍人菌濃度。
本研究亦進行了安養院環境調查,發現當冷卻水塔水中溶解性有機碳 (DOC) 濃度高於20 mg L-1和導電度大於2,000 μs cm-1,以及距離水塔上次清洗時間大於50天會導致顯著較高之退伍軍人菌盛行率 (all p < 0.05)。而於未操作的水塔,及水塔水樣具有較高之硬度和總懸浮固體物 (TSS) 時可測得較高之退伍軍人菌濃度 (all p < 0.05)。對於熱水系統,退伍軍人菌污染的風險因子為系統中存在Hartmannella vermfiormis、屋齡大於24年、水龍頭未加裝過濾接頭、水中硬度大於50 mg L-1 as CaCO3、pH > 7.5、餘氯濃度 ≤ 0.1 mg L-1、以及生物膜中含有的異營性細菌濃度 (heterotrophic plate counts, HPC) 高於7 log CFU per cm2 (all p < 0.05)。而熱水系統中的退伍軍人菌濃度則會隨著屋齡及熱水pH、導電度、TSS的增加而上升 (all p < 0.05)。另外,熱水系統中含高濃度HPC亦為高退伍軍人菌濃度之風險因子 (p < 0.05)。然而,生物膜中的退伍軍人菌盛行率及檢出濃度則與水中TSS呈顯著負相關 (both p < 0.05)。為能有效降低退伍軍人菌感染的風險,上述這些導致嚴重退伍軍人菌污染的風險因子均需於研擬冷卻水塔及熱水系統中退伍軍人菌的控制策略時納入考量。
總結而言,本研究成功的發展/最佳化DNA分離處理程序和IIC方法以解決qPCR抑制問題,並證明了以EMA-qPCR定量具活性退伍軍人菌的可環境應用性。此外,退伍軍人菌污染冷卻水塔和熱水系統的風險因子亦於本研究中清楚闡明,提供了控制退伍軍人菌及防治退伍軍人症的有效資訊。
zh_TW
dc.description.abstractReal-time quantitative PCR (qPCR) is popularly used to quantify legionellae; however, it may be interfered by environmental qPCR inhibitors and cannot differentiate viable and non-viable cells. This study tried to overcome such problems by optimizing DNA isolation procedure first. Evaluation was performed using samples spiked with humic acid (HA, ≤126.8 mg L-1), ferric ion alone (Fe, ≤3 mg L-1) or Fe/HA (≤3/100 mg L-1). QiAamp DNA Mini Kit (Q) is the appropriate DNA isolation method for quantifying legionellae by qPCR because it removed HA from 1.9-126.8 mg L-1 to an undetectable level (< 1 mg L-1), obtained the highest DNA yield, and relieved qPCR inhibition and acquired the highest cell recovery under 10- or 100-fold dilution. Further validation with cooling tower (CT) water shows that for detecting Legionella pneumophila and detecting/quantifying Legionella spp. by qPCR, Q with post 10-fold dilution is suggested to perform first. Afterward, L. pneumophila-positive samples should be re-analyzed a 100-fold dilution to acquire accurate cell concentrations.
Secondly, the capability of an internal inhibition control (IIC) to quantify the level of qPCR inhibition was assessed. Evaluation of L. pneumophila DNA-spiked samples, with or without the addition of HA or Fe, shows a significant and negative correlation between qPCR inhibition levels and qPCR-determined quantities of L. pneumophila DNA (r = -0.917). Such a dose-response relationship was also found in samples taken from CT and hot water systems (HWS) with detectable legionellae and > 5% partial qPCR inhibition levels (r = -0.635 and -0.826). These findings demonstrate that the IIC assay can reliably quantify > 5% partial qPCR inhibition levels. Moreover, for environmental samples, dilution treatment can significantly reduce qPCR inhibition levels and increase legionellae concentrations, highlighting the ability of the IIC assay to monitor the effectiveness of an intervention on the relief of inhibition.
Thirdly, this study optimized the technique of combining ethidium monoazide (EMA, 0.9-45.5 μg mL-1) with qPCR (i.e. EMA-qPCR) and evaluated its environmental applicability on quantifying viable legionellae in water and biofilm of CT and HWS. qPCR with EMA at 2.3 μg mL-1 was determined as the optimal EMA-qPCR assay, which can accurately quantify viable L. pneumophila, L. anisa and legionellae-like amoebal pathogens 6 without interferences by heated legionellae, unheated non-legionellae cells, and CT water matrix (p > 0.05). For water and biofilm samples of CT and HWS, the viable legionellae counts determined by EMA-qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR.
A nursing home survey conducted found a higher prevalence of legionellae in CT with a time interval between sampling and last cleaning > 50 days, dissolved organic carbon (DOC) > 20 mg L-1, and conductivity > 2,000 μs cm-1 (all p < 0.05), while legionellae concentrations were positively associated with non-operating CT and an increase in water hardness and total suspended solids (TSS) (all p < 0.05). Moreover, legionellae were more found in HWS with hardness > 50 mg L-1 as CaCO3, pH > 7.5, free chlorine ≤ 0.1 mg L-1, presence of Hartmannella vermfiormis, heterotrophic plate counts (HPC) in swab > 7 log CFU per cm2, building age > 24 years, and faucets without filters (all p < 0.05), while their abundance was increased with building age, pH, conductivity, and TSS (all p < 0.05). A higher level of HPC in HWS also increased legionellae concentration (p < 0.05). Furthermore, presence of legionellae in hot water was enhanced for DOC > 1 mg L-1 (p < 0.05), whereas legionellae prevalence and counts in swab were negatively correlated with water TSS (both p < 0.05). These risk factors should be considered in the control of legionellae contamination in CT and HWS to minimize the risk of legionellae infection.
In conclusion, this study successfully optimizes DNA isolation procedure and develops the IIC assay for overcoming qPCR inhibition and demonstrates the applicability of EMA-qPCR for quantifying viable legionellae. Moreover, the risk factors for legionellae in CT and HWS are clearly identified, which would help to control legionellae and prevent legionellosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:14:45Z (GMT). No. of bitstreams: 1
ntu-100-D92844001-1.pdf: 3020309 bytes, checksum: 0b89dd487d94b44682e463af61c7612b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝.....................................................i
摘要.....................................................iii
ABSTRACT.................................................v
Chapter 1: Introduction..................................1
1.1 Background.......................................1
1.1.1 Legionellosis....................................1
1.1.2 Legionellae......................................1
1.1.3 Detection and quantification of legionellae......2
1.1.4 qPCR inhibition..................................3
1.1.5 Association of legionellae contamination with environmental factors....................................5
1.2 Objectives of this Study.........................6
Chapter 2: Evaluation of DNA Isolation Procedures for Detecting and Quantifying Environmental Legionellae by Real-Time Quantitative PCR...............................9
2.1 Introduction.....................................9
2.2 Materials and Methods............................11
2.2.1 Organisms and samples preparation................11
2.2.2 Cooling tower water samples......................12
2.2.3 DNA extraction...................................12
2.2.4 DNA purification.................................14
2.2.5 DNA yield........................................14
2.2.6 HA quantification................................15
2.2.7 qPCR assay.......................................15
2.2.8 qPCR inhibition..................................16
2.2.9 Statistical analysis.............................17
2.3 Results..........................................18
2.3.1 DNA yield........................................18
2.3.2 Removal of HA....................................18
2.3.3 qPCR inhibition..................................20
2.3.4 Concentration of L. pneumophila..................22
2.3.5 Detection and quantification of L. pneumophila in cooling tower waters.....................................24
2.3.6 Detection and quantification of Legionella spp. in cooling tower waters.....................................25
2.4 Discussion.......................................28
Chapter 3: Quantification of Legionella pneumophila by Real-Time Quantitative PCR from Samples with Humic acid and Ferric ion...............................................35
3.1 Introduction.....................................35
3.2 Materials and methods............................36
3.2.1 Organism and sample preparation..................36
3.2.2 DNA isolation....................................38
3.2.3 DNA yield........................................39
3.2.4 HA measurement...................................39
3.2.5 qPCR assay.......................................40
3.2.6 Level of qPCR inhibition.........................41
3.2.7 Statistical analysis.............................41
3.3 Results..........................................42
3.3.1 DNA yield........................................42
3.3.2 HA removal.......................................43
3.3.3 Level of qPCR inhibition.........................43
3.3.4 Concentration of L. pneumophila..................48
3.4 Discussion.......................................52
Chapter 4: Rapid Quantification of Viable Legionellae in Water and Biofilm Using Ethidium Monoazide Coupled with Real-Time Quantitative PCR...............................57
4.1 Introduction.....................................57
4.2 Materials and Methods............................60
4.2.1 Bacterial strains and culture condition..........60
4.2.2 Heat challenge...................................61
4.2.3 EMA treatment....................................61
4.2.4 PMA treatment....................................62
4.2.5 Dynamic range of viable cell concentrations......63
4.2.6 Effects of non-legionellae microflora and heated legionellae..............................................63
4.2.7 Effects of sample matrix.........................64
4.2.8 Environmental sampling...........................65
4.2.9 Pretreatments of environmental samples for culture assay....................................................65
4.2.10 Culture assay....................................66
4.2.11 Pretreatments of environmental samples for qPCR and EMA-qPCR.................................................67
4.2.12 DNA extraction and qPCR..........................67
4.2.13 BacLight-EM......................................70
4.2.14 Statistical analysis.............................70
4.3 Results..........................................71
4.3.1 Optimal EMA concentration........................71
4.3.2 Comparison among BacLight-EM, EMA-qPCR and PMA-qPCR.................................................72
4.3.3 Dynamic range of viable cell concentrations......74
4.3.4 Effects of heated legionellae and microflora.....76
4.3.5 Effects of sample matrix.........................80
4.3.6 Legionella spp. and L. pneumophila in cooling towers and hot water systems.............................82
4.4 Discussion.......................................85
Chapter 5: Capability of An Internal Inhibition Control for Quantification of qPCR Inhibition in Environmental Samples..................................................91
5.1 Introduction.....................................91
5.2 Materials and methods............................95
5.2.1 Organism preparation.............................95
5.2.2 IIC oligonucleotide..............................95
5.2.3 IIC testing with spiked samples..................96
5.2.4 IIC validation with environmental samples........97
5.2.5 Data management and analysis.....................100
5.3 Results..........................................101
5.3.1 qPCR inhibition level and L. pneumophila DNA quantity in spiked samples...............................101
5.3.2 Level of qPCR inhibition in environmental samples..................................................104
5.3.3 Quantifiable range of IIC assay for the level of qPCR inhibition..........................................106
5.4 Discussion.......................................108
Chapter 6: Risk Factors for Legionellae Presence and Abundance in Hot Water Systems and Cooling Towers of Nursing Homes............................................113
6.1 Introduction.....................................113
6.2 Materials and methods............................116
6.2.1 Samples collection...............................116
6.2.2 Legionella spp. and L. pneumophila...............117
6.2.3 Characteristics of CT and HWS....................118
6.2.4 Water parameters.................................118
6.2.5 HPC, Acanthamoeba spp. and H. vermiformis........119
6.2.6 Statistical analysis.............................121
6.3 Results..........................................122
6.3.1 Characteristics of CT and HWS....................122
6.3.2 Water parameters.................................124
6.3.3 HPC and amoebae..................................124
6.3.4 Presence of legionellae..........................125
6.3.5 Concentrations of legionellae....................125
6.3.6 Risk factors for legionellae presence in CT......128
6.3.7 Risk factors for legionellae abundance in CT.....130
6.3.8 Risk factors for legionellae presence in HWS.....132
6.3.9 Risk factors for legionellae abundance in HWS....133
6.4 Discussion.......................................136
Chapter 7: Conclusions and Recommendation................145
References...............................................148
Appendix A...............................................159
Appendix B...............................................173
Appendix C...............................................191
Appendix D...............................................225
Appendix E...............................................255
Appendix F...............................................297
dc.language.isoen
dc.title退伍軍人菌環境監測技術研究zh_TW
dc.titleDevelopment of Techniques on Environmental Monitoring for Legionellaeen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡文城,潘子明,鄧麗珍,王根樹,趙馨
dc.subject.keyword退伍軍人菌,即時定量聚合&#37238,鏈鎖反應,qPCR抑制,抑制內標,ethidium monoazide,安養院,zh_TW
dc.subject.keywordlegionellae,real-time quantitative PCR,qPCR inhibition,internal inhibition control,ethidium monoazide,nursing home,en
dc.relation.page298
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved